• Title/Summary/Keyword: Cryptographic Technology

Search Result 213, Processing Time 0.027 seconds

Toward a New Safer Cybersecurity Posture using RC6 & RSA as Hybrid Crypto-Algorithms with VC Cipher

  • Jenan.S, Alkhonaini;Shuruq.A, Alduraywish;Maria Altaib, Badawi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.164-168
    • /
    • 2023
  • As our community has become increasingly dependent on technology, security has become a bigger concern, which makes it more important and challenging than ever. security can be enhanced with encryption as described in this paper by combining RC6 symmetric cryptographic algorithms with RSA asymmetric algorithms, as well as the Vigenère cipher, to help manage weaknesses of RC6 algorithms by utilizing the speed, security, and effectiveness of asymmetric algorithms with the effectiveness of symmetric algorithm items as well as introducing classical algorithms, which add additional confusion to the decryption process. An analysis of the proposed encryption speed and throughput has been conducted in comparison to a variety of well-known algorithms to demonstrate the effectiveness of each algorithm.

타원곡선 알고리즘 표준화 동향

  • 이필중
    • Review of KIISC
    • /
    • v.10 no.2
    • /
    • pp.21-32
    • /
    • 2000
  • 본 고에서는 타원곡선 알고리즘의 표준화 동향을 국내외 표준들을 바탕으로 살펴보았다 먼저 ISO/IEC JTC1/SC27/WG2 Information technology-Security techniques-Cryptographic techniques based on elliptic curves 문서를 바탕으로 국제표준에 대해서 자세히 살펴보았으며 IEEE P1363 ANSI X9.62/X9.63 에 대해서 간략히 살펴보았다 또한 타원곡선 알고리즘과 관련된 국내 표준화 활동에 대해서도 살펴보았다.

  • PDF

A Study on the Operation Components for Elliptic Curve Cryptosystem based on a Real Number Field (실수체 기반 타원곡선 암호시스템의 연산항 연구)

  • Woo, Chan-Il;Goo, Eun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.795-800
    • /
    • 2012
  • Recently, as communication is evolved by leaps and bounds through wired/wireless networks, variety of services are routinely made through communication networks. Accordingly, technology that is for protecting data and personal information is required essentially, and study of security technology is actively being make progress to solve these information protection problems. In this paper, to expand selection scope of the key of elliptic curve cryptography, arithmetic items of real number based elliptic curve algorithm among various cryptographic algorithms was studied. The result of an experiment, we could know that elliptic curve cryptography using the real number can choose more various keys than existing elliptic curve cryptography using integer and implement securer cryptographic system.

An Efficient Implementation of Lightweight Block Cipher Algorithm HIGHT for IoT Security (사물인터넷 보안용 경량 블록암호 알고리듬 HIGHT의 효율적인 하드웨어 구현)

  • Bae, Gi-Chur;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.285-287
    • /
    • 2014
  • This paper describes a design of area-efficient/low-power cryptographic processor for lightweight block cipher algorithm HIGHT which was approved as a cryptographic standard by KATS and ISO/IEC. The HIGHT algorithm which is suitable for the security of IoT(Internet of Things), encrypts a 64-bit plain text with a 128-bit cipher key to make a 64-bit cipher text, and vice versa. For area-efficient and low-power implementation, we adopt 32-bit data path and optimize round transform block and key scheduler to share hardware resources for encryption and decryption.

  • PDF

Design of Validation System for a Crypto-Algorithm Implementation (암호 알고리즘 구현 적합성 평가 시스템 설계)

  • Ha, Kyeoung-Ju;Seo, Chang-Ho;Kim, Dae-Youb
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.4
    • /
    • pp.242-250
    • /
    • 2014
  • Conventional researches of standard tool validating cryptographic algorithm have been studied for the internet environment, for the mobile internet. It is important to develop the validation tool for establishment of interoperability and convenience of users in the information systems. Therefore, this paper presents the validation tool of Elliptic Curve Cryptography algorithm that can test if following X9.62 technology standard specification. The validation tool can be applied all information securities using DES, SEED, AES, SHA-1/256/384/512, RSA-OAEP V2.0, V2.1, ECDSA, ECKCDSA, ECDH, etc. Moreover, we can enhance the precision of validation through several experiments and perform the validation tool in the online environment.

An Integrated Cryptographic Processor Supporting ARIA/AES Block Ciphers and Whirlpool Hash Function (ARIA/AES 블록암호와 Whirlpool 해시함수를 지원하는 통합 크립토 프로세서 설계)

  • Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.38-45
    • /
    • 2018
  • An integrated cryptographic processor that efficiently integrates ARIA, AES block ciphers and Whirlpool hash function into a single hardware architecture is described. Based on the algorithm characteristics of ARIA, AES, and Whirlpool, we optimized the design so that the hardware resources of the substitution layer and the diffusion layer were shared. The round block was designed to operate in a time-division manner for the round transformation and the round key expansion of the Whirlpool hash, resulting in a lightweight hardware implementation. The hardware operation of the integrated ARIA-AES-Whirlpool crypto-processor was verified by Virtex5 FPGA implementation, and it occupied 68,531 gate equivalents (GEs) with a 0.18um CMOS cell library. When operating at 80 MHz clock frequency, it was estimated that the throughputs of ARIA, AES block ciphers, and Whirlpool hash were 602~787 Mbps, 682~930 Mbps, and 512 Mbps, respectively.

An efficient hardware implementation of 64-bit block cipher algorithm HIGHT (64비트 블록암호 알고리듬 HIGHT의 효율적인 하드웨어 구현)

  • Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1993-1999
    • /
    • 2011
  • This paper describes a design of area-efficient/low-power cryptographic processor for HIGHT block cipher algorithm, which was approved as standard of cryptographic algorithm by KATS(Korean Agency for Technology and Standards) and ISO/IEC. The HIGHT algorithm, which is suitable for ubiquitous computing devices such as a sensor in USN or a RFID tag, encrypts a 64-bit data block with a 128-bit cipher key to make a 64-bit cipher text, and vice versa. For area-efficient and low-power implementation, we optimize round transform block and key scheduler to share hardware resources for encryption and decryption. The HIGHT64 core synthesized using a 0.35-${\mu}m$ CMOS cell library consists of 3,226 gates, and the estimated throughput is 150-Mbps with 80-MHz@2.5-V clock.

Safety Analysis of Various Padding Techniques on Padding Oracle Attack (패딩 오라클 공격에 따른 다양한 패딩방법의 안전성 분석)

  • Kim, Kimoon;Park, Myungseo;Kim, Jongsung;Lee, Changhoon;Moon, Dukjae;Hong, Seokhee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.271-278
    • /
    • 2015
  • We use various types of cryptographic algorithms for the protection of personal and sensitive informations in the application environments, such as an internet banking and an electronic commerce. However, recent researches were introduced that if we implement modes of operation, padding method and other cryptographic implementations in a wrong way, then the critical information can be leaked even though the underlying cryptographic algorithms are secure. Among these attacking techniques, the padding oracle attack is representative. In this paper, we analyze the possibility of padding oracle attacks of 12 kinds of padding techniques that can be applied to the CBC operation mode of a block cipher. As a result, we discovered that 3 kinds were safe padding techniques and 9 kinds were unsafe padding techniques. We propose 5 considerations when designing a safe padding techniques to have a resistance to the padding oracle attack through the analysis of three kinds of safe padding techniques.

Integrated Data Structure for Quantum Key Management in Quantum Cryptographic Network (양자암호 통신망에서 양자키 관리를 위한 통합 데이터 구조)

  • Kim, Hyuncheol
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.3-7
    • /
    • 2021
  • In quantum cryptographic communication based on quantum mechanics, each piece of information is loaded onto individual photons and transmitted. Therefore, it is impossible to eavesdrop on only a part, and even if an intruder illegally intercepts a photon and retransmits it to the recipient, it is impossible to send the same information to the photon by the principle of quantum duplication impossible. With the explosive increase of various network-based services, the security of the service is required to be guaranteed, and the establishment of a quantum cryptographic communication network and related services are being promoted in various forms. However, apart from the development of Quantum Key Distribution (QKD) technology, a lot of research is needed on how to provide network-level services using this. In this paper, based on the quantum encryption device, we propose an integrated data structure for transferring quantum keys between various quantum encryption communication network devices and realizing an encrypted transmission environment.

Analysis of NIST PQC Standardization Process and Round 4 Selected/Non-selected Algorithms (NIST PQC 표준화 과정 및 Round 4 선정/비선정 알고리즘 분석)

  • Choi Yu Ran;Choi Youn Sung;Lee Hak Jun
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • As the rapid development of quantum computing compromises current public key encryption methods, the National Institute of Standards and Technology (NIST) in the United States has initiated the Post-Quantum Cryptography(PQC) project to develop new encryption standards that can withstand quantum computer attacks. This project involves reviewing and evaluating various cryptographic algorithms proposed by researchers worldwide. The initially selected quantum-resistant cryptographic algorithms were developed based on lattices and hash functions. Currently, algorithms offering diverse technical approaches, such as BIKE, Classic McEliece, and HQC, are under review in the fourth round. CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON, and SPHINCS+ were selected for standardization in the third round. In 2024, a final decision will be made regarding the algorithms selected in the fourth round and those currently under evaluation. Strengthening the security of public key cryptosystems in preparation for the quantum computing era is a crucial step expected to have a significant impact on protecting future digital communication systems from threats. This paper analyzes the security and efficiency of quantum-resistant cryptographic algorithms, presenting trends in this field.