• Title/Summary/Keyword: Crushing effect

Search Result 141, Processing Time 0.028 seconds

Removal of chromium from tannery wastewater by electrosorption on carbon prepared from peach stones: effect of applied potential

  • Ziati, Mounir;Khemmari, Fariza;Kecir, Mohamed;Hazourli, Sabir
    • Carbon letters
    • /
    • v.21
    • /
    • pp.81-85
    • /
    • 2017
  • The objective of this study is the removal of chromium from tannery wastewater by electrosorption on carbon prepared from lignocellulosic natural residue "peach stones' thermally treated. The followed steps for obtaining coal in chronological order were: cleaning, drying, crushing and finally its carbonization at $900^{\circ}C$. The characterization of the carbon material resulted in properties comparable to those of many coals industrially manufactured. The study of the dynamic adsorption of chromium on the obtained material resulted in a low removal rate (33.7%) without applied potential. The application of negative potentials of -0.7 V and -1.4 increases the adsorption of chromium up to 90% and 96% respectively. Whereas a positive potential of +1.4V allows desorption of the contaminant of 138%.

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

Hysteresis of concrete-filled circular tubular (CFCT) T-joints under axial load

  • Liu, Hongqing;Shao, Yongbo;Lu, Ning;Wang, Qingli
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.739-756
    • /
    • 2015
  • This paper presents investigations on the hysteretic behavior of concrete-filled circular tubular (CFCT) T-joints subjected to axial cyclic loading at brace end. In the experimental study, four specimens are fabricated and tested. The chord members of the tested specimens are filled with concrete along their full length and the braces are hollow section. Failure modes and load-displacement hysteretic curves of all the specimens obtained from experimental tests are given and discussed. Some indicators, in terms of stiffness deterioration, strength deterioration, ductility and energy dissipation, are analyzed to assess the seismic performance of CFCT joints. Test results indicate that the failures are primarily caused by crack cutting through the chord wall, convex deformation on the chord surface near brace/chord intersection and crushing of the core concrete. Hysteretic curves of all the specimens are plump, and no obvious pinching phenomenon is found. The energy dissipation result shows that the inelastic deformation is the main energy dissipation mechanism. It is also found from experimental results that the CFCT joints show clear and steady stiffness deterioration with the increase of displacement after yielding. However, all the specimens do not perform significant strength deterioration before failure. The effect of joint geometric parameters ${\beta}$ and ${\gamma}$ of the four specimens on hysteretic performance is also discussed.

Loss of strength in asbestos-cement water pipes due to leaching

  • Gil, Lluis;Perez, Marco A.;Bernat, Ernest;Cruz, Juan J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.655-663
    • /
    • 2011
  • Asbestos-cement is a material with valuable strength and durability. It was extensively used for water distribution pipes across the world from the 1950s until the early 1980s. The network of pipes in this case study dates from the 1970s, and after more than 30 to 40 years of service, some pipes have been found to break under common service pressure with no apparent reason. A set of mechanical tests was performed including bending, compression, pressure and crushing tests. Microscopy analysis was also used to understand the material behaviour. Tests showed that there was a clear loss of strength in the pipes and that the safety factor was under the established threshold in most of the specimens. Microscopy results showed morphological damage to the pipes. The loss of strength was attributed to a leaching effect. Leaching damages the cement matrix and reduces the frictional interfacial shear stress.

The Material Properties on the Crushing Effect of Recycled Aggregates (파쇄횟수가 순환골재의 품질특성에 미치는 영향)

  • Won, Chul;Park, Sang-Joon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.125-130
    • /
    • 2010
  • It is necessary to re-establish the code and to control the quality of the recycled aggregate itself for ensuring the useability of the recycled aggregate using waste concrete. Generally, adhering mortar cause of the water absorption ratio increment and strength decreased at the surface of the aggregate of the recycled aggregate using waste concrete, thus removing the adhering mortar could increase the useability of the recycled aggregate in the concrete industry. In this study, as a quality control method of the recycled aggregate using waste concrete, the quality characteristic of the recycled aggregate according to the mixing proportion between the recycled and the natural aggregate is obtained Therefore, a system is established to reuse the recycled aggregate in the construction industry.

  • PDF

Pollutant Release from Crushed Reclaimed Concrete (폐콘크리트 재생골재로부터의 오염물질 용출에 대한 실험적 고찰)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • Recycling of reclaimed concrete (RC) is very important in the management of construction and demolition wastes. Most of RC is utilized for land-filling after crushing in this country. In this study, a series of elution experiments were conducted to investigate the type and amount of pollutants released from the crushed RC. Most water quality parameters including heavy metals and some organic compounds were below standards for drinking water. Some of heavy metals such as As, Cd, Pb, Hg were detected in 0.5 N H2S04 solution after 24-hour immersing RC, which was conducted for evaluating a long term release effect. The concentration of the heavy metals were higher than the drinking water standards. The results also showed significant adsorption of heavy metals by crushed Re. Potential risks, based on the result of this study were not high in using crushed RC for land-filling. Appropriate management of RC would reduce the risk, for example the separation of hazardous materials from construction wastes. Long term evaluations for the sites of land filled with RC would be required to assess the environmental impacts.

Strength and Durability Properties of Polymer Concrete Utilizing Oyster Shell Powder as a Filler (굴 패각 분말을 충전재로 활용한 폴리머 콘크리트의 강도 및 내구 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.125-134
    • /
    • 2010
  • This study was performed to evaluate the workability, strengths and durability of polymer concrete using oyster shell that are reclaimed at public shore illegally or leaved on the surroundings of shore to prevent the environmental pollution. We investigated the effect of oyster shell powder (OSP) and $CaCO_3$. on the slump, compressive strength, flexural strength, acid sulfuric and freezing and thawing resistance as a filler of polymer concrete. Modified OSP obtained by crushing oyster shell (less than 0.15 mm size) consists of 60.47 wt% of $SiO_2$ and 39.5 wt% of $CaCO_3$. As a result of slump test by OSP and $CaCO_3$. contents, it is found that slump of specimen used OSP is lower than that used $CaCO_3$. and the more OSP contents are, its slump is increased. Compressive and flexural strength of polymer concrete using OSP are similar or slightly lower than that using $CaCO_3$. In acid sulfuric test for 5 % $H_2SO_4$ and freezing thawing test, regardless of kinds of fillers and contents are not found fatal defects in weight change, falling-off in surface and durability factor.

Evaluation of Rock Fragmentation due to Artificial Joint Effect (인공절리에 의한 암석의 파쇄도 평가)

  • Noh, You-Song;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • Since the rock fragmentation by blasting can affect the subsequent processes including loading, hauling and secondary crushing, its control is essential for the assessment of blasting efficiency as well as production cost. In this study, we were analyzed the rock fragmentation by the direction of artificial joint. The underground blasting experiments were performed after forming the vertical and horizontal artificial joints. The blast fragmentation was conducted by the split-desktop which is a 2D image processing program. As a result, it was found that the horizontal artificial joint was evaluated to have lower overall the size of muck pile than the vertical artificial joint and the distribution of the size of muck pile was varied. It is possible that the direction of artificial joint could suppress the occur of oversize muck pile and control to a certain size or less.

Investigation of expanding-folding absorbers with functionally graded thickness under axial loading and optimization of crushing parameters

  • Chunwei, Zhang;Limeng, Zhu;Farayi, Musharavati;Afrasyab, Khan;Tamer A., Sebaey
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.775-796
    • /
    • 2022
  • In this study, a new type of energy absorbers with a functionally graded thickness is investigated, these type of absorbers absorb energy through expanding-folding processes. The expanding-folding absorbers are composed of two sections: a thin-walled aluminum matrix and a thin-walled steel mandrel. Previous studies have shown higher efficiency of the mentioned absorbers compared to the conventional ones. In this study, the effect of thickness which has been functionally-graded on the aluminum matrix (in which expansion occurs) was investigated. To this end, initial functions were considered for the matrix thickness, which was ascending/descending along the axis. The study was done experimentally and numerically. Comparing the experimental data with the numerical results showed high consistency between the numerical and experimental results. In the final section of this study, the best energy absorber functionally graded thickness was introduced by optimization using a third-order genetic algorithm. The optimization results showed that by choosing a minimum thickness of 1.6 mm and the exponential coefficient of 3.25, the most optimal condition can be obtained for descending thickness absorbers.

Economic Evaluation of a Crush-screen Hybrid Pretreatment Process for Waste Vinyl (폐비닐의 파쇄/선별 융합 전처리 공정의 경제성 평가)

  • Seo, Su Been;Cho, Il Ho;Yun, Hyun Pyo;Kang, Seo Yeong;Kim, Hyung Woo;Lee, See Hoon
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.289-295
    • /
    • 2019
  • Though the usage of vinyls and plastics produced from fossil fuels has been increasing in the world, the eco-friendly domestic disposal or recycling of waste vinyls has to be executed because the migration or importation of waste vinyls or waste plastics are globally prohibited. Even though the eco-friendly domestic disposal or recycling of waste vinyls and waste plastics should be developed, promising eco-friendly recycling methods are few because there are extraneous substances in waste vinyls and waste plastics. Also, conventional incineration and landfill methods result in secondary contamination and then increase disposal costs. Therefore, the selective elimination of extraneous substances or other materials included in waste vinyls and waste plastics could make valuable recycling or reuse possible. In particular, the novel hybrid process in which crushing and screening are simultaneously conducted in a rotary kiln type reactor can domestically maximize the material recycling or reuse. In this study, the feasibility study for a crushing/screening hybrid process developed in Korea was performed and evaluated in case of thermal recycling (TR) and material recycling (MR). The effect of various subsidies on economic efficiency was especially evaluated by means of domestic recycling plans. The incentive revenues from waste vinyl recycling and the incineration share of waste vinyls affected the net present values and internal rate of returns of the hybrid process.