Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.6.775

Investigation of expanding-folding absorbers with functionally graded thickness under axial loading and optimization of crushing parameters  

Chunwei, Zhang (Multidisciplinary Centre for Infrastructure Engineering, Shenyang University of Technology)
Limeng, Zhu (Structural Vibration Control Group, Qingdao University of Technology)
Farayi, Musharavati (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University)
Afrasyab, Khan (Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University)
Tamer A., Sebaey (Engineering Management Department, College of Engineering, Prince Sultan University)
Publication Information
Steel and Composite Structures / v.45, no.6, 2022 , pp. 775-796 More about this Journal
Abstract
In this study, a new type of energy absorbers with a functionally graded thickness is investigated, these type of absorbers absorb energy through expanding-folding processes. The expanding-folding absorbers are composed of two sections: a thin-walled aluminum matrix and a thin-walled steel mandrel. Previous studies have shown higher efficiency of the mentioned absorbers compared to the conventional ones. In this study, the effect of thickness which has been functionally-graded on the aluminum matrix (in which expansion occurs) was investigated. To this end, initial functions were considered for the matrix thickness, which was ascending/descending along the axis. The study was done experimentally and numerically. Comparing the experimental data with the numerical results showed high consistency between the numerical and experimental results. In the final section of this study, the best energy absorber functionally graded thickness was introduced by optimization using a third-order genetic algorithm. The optimization results showed that by choosing a minimum thickness of 1.6 mm and the exponential coefficient of 3.25, the most optimal condition can be obtained for descending thickness absorbers.
Keywords
crashworthiness; energy absorber; genetic algorithm; multi-objective optimization;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Akisanya, A.R. and Fleck, N.A. (2006), "Plastic collapse of thin-walled frusta and egg-box material under shear and normal loading", Int. J. Mech. Sci., 48(7), 799-808. https://doi.org/10.1016/j.ijmecsci.2006.01.020.    DOI
2 Alam, Z., Sun, L., Zhang, C. and Noroozinejad Farsangi, E. (2023), "Global performance of multi-story stiffness-eccentric RC structures subjected to progressive seismic excitations: Shaking table investigations", J. Build. Eng., 64(4), https://doi.org/10.1016/j.jobe.2022.105582.    DOI
3 Alavi Nia, A. and Chahardoli, S. (2016), "Optimizing the layout of nested three-tube structures in quasi-static axial collapse", ThinWall. Struct., 107, 169-181. https://doi.org/10.1016/j.tws.2016.06.010.    DOI
4 Alkhatib, S.E., Tarlochan, F. and Eyvazian, A. (2017), "Collapse behavior of thin-walled corrugated tapered tubes", Eng. Struct., 150, 674-692. https://doi.org/10.1016/j.engstruct.2017.07.081.    DOI
5 Almeida, B.P.P., Alves, M.L., Rosa, P.A.R., Brito, A.G. and Martins, P.A.F. (2006), "Expansion and reduction of thin-walled tubes using a die: Experimental and theoretical investigation", Int. J. Machine Tools Manufact., 46(12), 1643-1652. https://doi.org/10.1016/j.ijmachtools.2005.08.018.    DOI
6 Alves, M.L., Almeida, B.P.P., Rosa, P.A.R. and Martins, P.A.F. (2006), "End forming of thin-walled tubes", J. Mater. Process. Technol., 177(1), 183-187. https://doi.org/10.1016/j.jmatprotec.2006.04.040.    DOI
7 Asgari, A.B. and Jamshidi, M. (2018), "Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies", Steel Compos. Struct., 27(4), 427-438. http://dx.doi.org/10.12989/scs.2018.27.4.427.    DOI
8 ASM-International (1990), A.I.H. Committee, A.I.A.P.D. Committee, ASM Handbook, ASM International, ASM international Materials Park, OH 
9 Ahmad, Z. and Thambiratnam, D.P. (2009), "Crushing response of foam-filled conical tubes under quasi-static axial loading", Mater. Des., 30(7), 2393-2403. https://doi.org/10.1016/j.matdes.2008.10.017.    DOI
10 ASM-International (1990), Properties and Selection: Nonferrous Alloys and Special- Purpose Materials, ASM International
11 ASTME8/E8M-09 (2011), Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2009, www.astm.org., ASTM 
12 Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. http://dx.doi.org/10.12989/scs.2019.31.2.133.    DOI
13 Baykasoglu, C., Baykasoglu, A. and Tunay Cetin, M. (2019), "A comparative study on crashworthiness of thin-walled tubes with functionally graded thickness under oblique impact loadings", Int. J. Crashworthiness. 24(4), 453-471. https://doi.org/10.1080/13588265.2018.1478775.    DOI
14 Borges, H., Martinez, G. and Graciano, C. (2016), "Impact response of expanded metal tubes: A numerical investigation", Thin-Wall. Struct., 105, 71-80. https://doi.org/10.1016/j.tws.2016.04.005.    DOI
15 Chahardoli, S. and Nia, A.A. (2017), "Investigation of mechanical behavior of energy absorbers in expansion and folding modes under axial quasi-static loading in both experimental and numerical methods", Thin-Wall. Struct., 120 319-332. https://doi.org/10.1016/j.tws.2017.09.013.    DOI
16 Chahardoli, S., Nia, A.A. and Asadi, M. (2019), "Parametric investigation of the mechanical behavior of expanding-folding absorbers and their implementation in sandwich panels core", Thin-Walled Structures. 137, 53-66. https://doi.org/10.1016/j.tws.2019.01.003.    DOI
17 Chen, Yong Zhuang, Hai Fang, Weiqing Liu, and, L.Z. and Fan, Z. (2019), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. http://dx.doi.org/10.12989/scs.2019.31.2.133.    DOI
18 Eyvazian, A., Habibi, M.K., Hamouda, A.M. and Hedayati, R. (2014), "Axial crushing behavior and energy absorption efficiency of corrugated tubes", Mater. Des., 54, 1028-1038. https://doi.org/10.1016/j.matdes.2013.09.031.    DOI
19 Chen, Y., Bai, Z., Zhang, L., Wang, Y., Sun, G. and Cao, L. (2017), "Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles", Thin-Wall. Struct., 110, 133-139. https://doi.org/10.1016/j.tws.2016.11.001.    DOI
20 Choi, W.M., Kwon, T.S., Jung, H.S. and Kim, J.S. (2012), "Influence of impact velocity on energy absorption characteristics and friction coefficient of expansion tube", Int. J. Crashworthiness. 17(6), 621-629. https://doi.org/10.1080/13588265.2012.704188.    DOI
21 Gupta, N.K., Sheriff, N.M. and Velmurugan, R. (2006), "A study on buckling of thin conical frusta under axial loads", Thin-Wall. Struct., 44(9), 986-996. https://doi.org/10.1016/j.tws.2006.08.010.    DOI
22 Karrech, A. and Seibi, A. (2010), "Analytical model for the expansion of tubes under tension", J. Mater. Process. Technol., 210(2), 356-362. https://doi.org/10.1016/j.jmatprotec.2009.09.024.    DOI
23 Liu, Y. and Qiu, X. (2018), "A theoretical model of the shrinking metal tubes", Int. J. Mech. Sci., 144, 564-575. https://doi.org/10.1016/j.ijmecsci.2018.06.019.    DOI
24 Liu, Y., Qiu, X., Wang, W. and Yu, T.X. (2017), "An improved two-arcs deformational theoretical model of the expansion tubes", Int. J. Mech. Sci., 133, 240-250. https://doi.org/10.1016/j.ijmecsci.2017.08.036.    DOI
25 Mohammadiha, O. and Ghariblu, H. (2016), "Crush response of variable thickness distribution inversion tubes under oblique loading", Thin-Wall. Struct., 109, 159-173. https://doi.org/10.1016/j.tws.2016.09.018.    DOI
26 Niknejad, A. and Moeinifard, M. (2012), "Theoretical and experimental studies of the external inversion process in the circular metal tubes", Mater. Des., 40, 324-330. https://doi.org/10.1016/j.matdes.2012.04.005.    DOI
27 Mohammadiha, O. and Ghariblu, H. (2017), "Analytical study on functionally graded thickness tubes under external inversion process", Thin-Wall. Struct., 119, 820-827. https://doi.org/10.1016/j.tws.2017.08.002.    DOI
28 Mozafari, H., Eyvazian, A., Hamouda, A.M., Crupi, V., Epasto, G. and Gugliemino, E. (2018), "Numerical and experimental investigation of corrugated tubes under lateral compression", Int. J. Crashworthiness. 23(4), 461-473. https://doi.org/10.1080/13588265.2017.1345592.    DOI
29 Nia, A.A. and Chahardoli, S. (2016), "Mechanical behavior of nested multi-tubular structures under quasi-static axial load", Thin-Wall. Struct., 106, 376-389. https://doi.org/10.1016/j.tws.2016.05.012.    DOI
30 Shakeri, M., Salehghaffari, S. and Mirzaeifar, R. (2007), "Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation", Int. J. Crashworthiness. 12(5), 493-501. https://doi.org/10.1080/13588260701483540.    DOI
31 Song, J.F., Xu, S.C., Wang, H.X., Wu, X.Q. and Zou, M. (2018), "Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures", Thin-Wall. Struct., 125, 76-88. https://doi.org/10.1016/j.tws.2018.01.010.    DOI
32 Sun, G., Li, G., Gong, Z., Cui, X., Yang, X. and Li, Q. (2010), "Multiobjective robust optimization method for drawbead design in sheet metal forming", Mater. Des., 31(4), 1917-1929. https://doi.org/10.1016/j.matdes.2009.10.050.    DOI
33 Xu, F. (2015), "Enhancing material efficiency of energy absorbers through graded thickness structures", Thin-Wall. Struct., 97, 250-265. https://doi.org/10.1016/j.tws.2015.09.020.    DOI
34 Sun, G., Xu, F., Li, G. and Li, Q. (2014), "Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness", Int. J. Impact Eng., 64, 62-74. https://doi.org/10.1016/j.ijimpeng.2013.10.004.    DOI
35 Vinayagar, K. and Kumar, A.S. (2017), "Multi-response optimization of crashworthiness parameters of bi-tubular structures", Steel Compos. Struct., 23(1), 31-40. http://dx.doi.org/10.12989/scs.2017.23.1.031.    DOI
36 Xiang, X., Zou, S., Ha, N.S., Lu, G. and Kong, I. (2020), "Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing", Compos. Part B: Eng., 198, 108216. https://doi.org/10.1016/j.compositesb.2020.108216.    DOI
37 Xue, Q., Zhang, J., He, J. and Zhang, C. (2016), "Control performance and robustness of pounding tuned mass damper for vibration reduction in SDOF structure", Shock Vib., https://doi.org/10.1155/2016/8021690.    DOI
38 Xue, Q., Zhang, J., He, J., Zhang, C. and Zou, G. (2017), Seismic control performance for Pounding Tuned Massed Damper based on viscoelastic pounding force analytical method", J. Sound Vib., 411, 362-377, https://doi.org/10.1016/j.jsv.2017.08.035.    DOI
39 Yan, J., Yao, S., Xu, P., Peng, Y., Shao, H. and Zhao, S. (2016), "Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers", Int. J. Mech. Sci., 105, 206-214. https://doi.org/10.1016/j.ijmecsci.2015.11.022.    DOI
40 Yang, J., Luo, M., Hua, Y. and Lu, G. (2010), "Energy absorption of expansion tubes using a conical-cylindrical die: Experiments and numerical simulation", Int. J. Mech. Sci., 52(5), 716-725. https://doi.org/10.1016/j.ijmecsci.2009.11.015.    DOI
41 Zhang, C., Hao, H., Tarasov, B. and Zhu, X. (2012), "Some special phenomena and preliminary interpretations about measured strain signals from high speed impact tests", Int. J. Struct. Eng., 3(1), 48-60, https://doi.org/10.1504/IJSTRUCTE.2012.045043.    DOI
42 Yu, K., Liu, Y. and Zhang, Z. (2019), "Energy-absorbing analysis and reliability-based multiobjective optimization design of graded thickness B pillar with grey relational analysis", Thin-Wall. Struct., 145, 106364. https://doi.org/10.1016/j.tws.2019.106364.    DOI
43 Zhang, C. (2011), "Dynamic test and constitutive model of 225 mpa low yield point steel material and its energy absorption ability", Int. J. Protect. Struct., 2(4), 527-540, https://doi.org/10.1260/2041-4196.2.4.527.    DOI
44 Zhang, C., Gholipour, G. and Mousavi, A.A. (2021), "State-of-the-art review on responses of RC structures subjected to lateral impact loads", Archiv. Computa. Meth. Eng., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5.    DOI