DOI QR코드

DOI QR Code

Removal of chromium from tannery wastewater by electrosorption on carbon prepared from peach stones: effect of applied potential

  • Ziati, Mounir (Laboratory of Soft Technologies, Physico-Chemical Valorization of Biological Materials and Biodiversity, Department of Chemistry, Faculty of Sciences, M'hamed Bougara University) ;
  • Khemmari, Fariza (Food Technology Laboratory, Department of Environmental Engineering, Faculty of Engineering Sciences, M'hamed Bougara University) ;
  • Kecir, Mohamed (Mineral and Energy Resources Laboratory, Department of Mining and Oil Deposits, Faculty of Hydrocarbons and Chemistry, M'hamed Bougara University) ;
  • Hazourli, Sabir (Laboratory of Water Treatment and Valorization of Industrial Waste, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University)
  • Received : 2016.06.20
  • Accepted : 2016.12.19
  • Published : 2017.01.31

Abstract

The objective of this study is the removal of chromium from tannery wastewater by electrosorption on carbon prepared from lignocellulosic natural residue "peach stones' thermally treated. The followed steps for obtaining coal in chronological order were: cleaning, drying, crushing and finally its carbonization at $900^{\circ}C$. The characterization of the carbon material resulted in properties comparable to those of many coals industrially manufactured. The study of the dynamic adsorption of chromium on the obtained material resulted in a low removal rate (33.7%) without applied potential. The application of negative potentials of -0.7 V and -1.4 increases the adsorption of chromium up to 90% and 96% respectively. Whereas a positive potential of +1.4V allows desorption of the contaminant of 138%.

Keywords

References

  1. Kobya M, Demirbas E, Senturk E, Ince M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol, 96, 1518 (2005). https://doi.org/10.1016/j.biortech.2004.12.005.
  2. Calero M, Hernainz F, Blázquez G, Martin-Lara MA, Tenorio G. Biosorption kinetics of Cd (II), Cr (III) and Pb (II) in aqueous solutions by olive stone. Braz J Chem Eng, 26, 265 (2009). https://doi.org/10.1590/S0104-66322009000200004.
  3. Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke EA. Carbon materials in environmental applications. Chem Phys Carbon, 27, 1 (2000).
  4. Cases JM, Villieras F, Michot L. Les phenomenes d'adsorption, d'echange ou de retention a l'interface solide-solution aqueuse. 1. Connaissance des propriétés structurales, texturales et superficielles des solides. C R Acad Sci Ser IIa: Sci Terre Planetes, 331, 763 (2000). https://doi.org/10.1016/S1251-8050(00)01495-6.
  5. Suhas, Carrott PJM, Ribeiro Carrott MML. Lignin-from natural adsorbent to activated carbon: a review. Bioresour Technol, 98, 2301 (2007). https://doi.org/10.1016/j.biortech.2006.08.008.
  6. Baccar R, Bouzid J, Feki M, Montiel A. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J Hazard Mater, 162, 1522 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.041.
  7. Verheijen J, Vogg H. Metal extraction from flyash. Proceedings of the International Municipal Waste Incineration Workshop, Montreal, QC, 381 (1987).
  8. Walsh AR, O'Halloran J. Chromium speciation in tannery effluent. II: speciation in the effluent and in a receiving estuary. Water Res, 30, 2401 (1996). https://doi.org/10.1016/0043-1354(96)00174-1.
  9. Tiravanti G, Marani D, Passino R, Santori M. Synthesis and characterization of cellulose xanthate chelating exchangers for heavy metal removal and recovery from wastewaters. Stu Environ Sci, 34, 109 (1988). https://doi.org/10.1016/S0166-1116(08)71283-4.
  10. Esmaeili A, Mesdaghi nia A, Vazirinejad R. Chromium (III) removal and recovery from tannery wastewater by precipitation process. Am J Appl Sci, 10, 1471 (2005). https://doi.org/10.3844/ajassp.2005.1471.1473.
  11. Strohl JH, Dunlap KL. Electrosorption and separation of quinones on a column of graphite particles. Anal Chem, 44, 2166 (1972). https://doi.org/10.1021/ac60321a012.
  12. Alkire RC, Eisinger RS. Separation by electrosorption of organic compounds in a flow-through porous electrode : I. mathematical model for one-dimensional geometry. J Electrochem Soc, 130, 85 (1983). https://doi.org/10.1149/1.2119688.
  13. Donnet JP, Hueber F, Reitzer C, Odoux J, Riess G. Etude de l'action chimique des oxydants sur le noir de carbone. Bull Soc Chim Fr, 294, 1727 (1962).
  14. Steenberg B. Adsorption and Exchange of Ions on Activated Charcoal, Almqvist and Wiksell, Uppsala (1944).
  15. Anundo Polania L. Contribution a L'etude de la Fixation du Cyanure d'or et de Potassium sur les Charbons Actifs, Universite de Haute-Alsace, Mulhouse, PhD Thesis (1986).
  16. Boehm HP. Chemical identification of surface groups. Adv Catal, 16, 179 (1966). https://doi.org/10.1016/S0360-0564(08)60354-5.
  17. Mattson JS, Mark HB. Activated Carbon: Surface Chemistry and Adsorption from Solution, Marcel Dekker, New York (1971).
  18. Duranoglu D, Trochimczuk AW, Beker U. A comparison study of peach stone and acrylonitrile-divinylbenzene copolymer based activated carbons as chromium(VI) sorbents. Chem Eng J, 165, 56 (2010). https://doi.org/10.1016/j.cej.2010.08.054.
  19. Julien F. Contribution a L'etude des Mecanismes de L'adsorption de Molecules Organiques sur Differents Types de Charbons Actifs, Universite de Poitiers, Poitiers, PhD Thesis (1994).
  20. Seron A, Benaddi H, Beguin F, Frackowiak E, Bretelle JL, Thiry MC, Bandosz TJ, Jagiello J, Schwarz JA. Sorption and desorption of lithium ions from activated carbons. Carbon, 34, 481 (1996). https://doi.org/10.1016/0008-6223(95)00200-6.
  21. Kim JS, Jung CH, Oh WZ, Ryu SK. Electrosorption and separation of $Co^{2+}$ and $Sr^{2+}$ ions from decontaminated liquid wastes. Carbon Sci, 3, 6 (2002).
  22. Alfarra A, Frackowiak E, Beguin F. Mechanism of lithium electrosorption by activated carbons. Electrochim. Acta 47, 1545 (2002). https://doi.org/10.1016/S0013-4686(01)00890-8