• Title/Summary/Keyword: Crude Zn oxide

Search Result 9, Processing Time 0.019 seconds

A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide (조산화아연의 정제과정에서 발생된 2차분진으로부터 유용금속원소(Zn, Pb)의 분리회수에 관한 연구)

  • Yoon, Jae-hong;Yoon, Chi-hyun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.66-76
    • /
    • 2021
  • Electric arc furnace dust (EAFD) contains compounds, such as oxides and chlorides, including large quantities of Zn, Pb and Fe. An efficient and stable method for the extraction of metal elements from EAFD is the Rotary Kiln Process. This method is used to recover Zn in the form of crude ZnO (approximately 60%) via the addition of a reducing agent (coke, anthracite) and limestone (for basicity control) to EAFD. This process is commonly used in industry as well as in research and development. Currently, this method is used in many Korean commercial plants, producing approximately 150,000 tons of Crude ZnO per year. The majority of Zn is found in crude ZnO (approximately 76%). In addition components such as Pb, Cd, Sn, In, Fe, Cl, and F are present as oxides, chlorides, and alkaline compounds. This elements have an adverse effect on the zinc smelting process. Therefore, a refining process that eliminates these impurities is essential. In this study, we developed a process technology that efficiently separates Zn and Pb from byproducts (mainly chlorides). A bag filter was used to collect Zn and Pb generated during the dry purification process of crude ZnO. Pure components were recovered as metals or metal carbonate.

Ammonium Chloride Solution Leaching of Crude Zinc Oxide Recovered from Reduction of EAF′s Dust

  • Youn, Ki-Byoung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.365-369
    • /
    • 2001
  • EAF's dust has been treated mainly by pyrometallurgical reduction process in rotary kiln furnace to recover valuable metal elements such as Zn and to avoid the disposal of hazardous materials to waste. Recently, hydrometallurgical eletrowinning of zinc from a zinc-amino chloride solution obtained by the leaching of EAF's dust was developed to recover high grade zinc metal from EAF’s dust. But there are some disadvantages in each process such as difficulty of operation condition control and sticking problem in kiln process and low extractability and recovery of zinc owing to insoluble zinc-ferrite in electrowinning process. We propose a new combined process of pyrometallurgical one and hydrometallurgical one to treat EAF's dust efficiently and economically. In this study, ammonium chloride solution leaching of crude zinc oxide recovered from reduction of EAF's dust was carried out to find out the efficiency of zinc extraction from it and the possibility for performance of eletrowinning in the proposed process. Effects of various leaching variables ruck as leaching temperature, concentration of leaching solution and leaching time were investigated. And the leaching results of the crude zinc oxide were compared with those of EAF's dust. The extraction percents of zinc in ammonium chloride solution leaching of the crude zinc oxide recovered from reduction of EAF's dust were above 80% after 60 minutes of leaching under the leaching condition of 4M NH$_4$CI concentration and above leaching temperature of 7$0^{\circ}C$. And the concentrations of zinc in the leached solution were obtained above 50g/$\ell$. The activation energy calculated for zinc extraction in NH$_4$CI leaching was 58.1 KJ/㏖ for EAF's dust and 15.8 KJ/㏖ for the crude zinc oxide recovered from reduction of EAF's dust.

  • PDF

A Study on Roasting Refinement of Crude-ZnO from Electric Arc Furnace Steel Dust (전기로 제강분진으로부터 분리 회수한 조산화아연의 산화배소 정제에 관한 연구)

  • Yoon, Chi Hyun;Lee, Myungwon;Seo, Junghwa;Yoon, Jaehong
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • Variety of volatile materials is present in crude-Zinc oxide recovered from EAFD(Electric arc furnace steel dust). Commonly, it is purified by oxidizing roasting. In this study, spherical each specimen prepared crude-zinc oxide like 1~3 mm and 10 mm was tested in vertical tube furnace at the temperature range $600^{\circ}C$ to $1200^{\circ}C$ in oxidizing atmosphere. Oxidizing roasting properties of zinc oxide were investigated using XRD, XRF and ICP-OES. At temperature blow $950^{\circ}C$ volatilization rate were remarkably low. As the temperature increases, the concentration of Zn increased and the concentration and XRD peaks of impurities decreased. The result indicated that volatilization rate depended on specimen size and roasting temperature.

Effects of Antibiotics, Zinc Oxide or a Rare Earth Mineral-Yeast Product on Performance, Nutrient Digestibility and Serum Parameters in Weanling Pigs

  • Han, Yung-Keun;Thacker, Philip A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1057-1065
    • /
    • 2010
  • Two experiments were conducted to compare the effects of feeding a newly-developed rare earth mineral-yeast product, zinc oxide (ZnO) or antibiotics on the performance, nutrient digestibility and serum parameters of weanling pigs. In experiment 1, 150 crossbred barrows (24 d old and 6.28 kg BW) were fed one of five dietary treatments consisting of an unsupplemented basal diet or the basal diet supplemented with antibiotics (33 ppm tiamulin and 100 ppm chlortetracycline), ZnO (1,500 or 2,500 ppm) or 0.1% peptide-bound rare earth mineral-yeast. In experiment 2, 576 crossbred barrows (28 d old and 7.20 kg BW) were fed the same diets as those used in experiment 1 modified only by the addition of 1.0% Celite 545 to all diets as a digestibility marker. However, the negative control was not included. In experiment 1, weight gain was significantly lower (p<0.05) for pigs fed the negative control than for pigs fed diets supplemented with antibiotics, ZnO, or rare earth mineral-yeast. Pig performance did not differ between pigs fed the four supplemented diets. In experiment 2, there were no differences in performance between pigs fed diets supplemented with antibiotic, ZnO or rare earth mineral-yeast. The digestibility of dry matter, crude protein, calcium, phosphorus and energy were significantly (p<0.01) higher on the rare earth mineral-yeast diet than on diets supplemented with ZnO. In addition, pigs fed the diet supplemented with rare earth mineral-yeast had significantly (p<0.05) higher digestibility of histidine, lysine, threonine and valine than pigs fed the ZnO supplemented diets. Digestibility coefficients for pigs fed antibiotics tended to be intermediate to those of pigs fed rare earth mineralyeast or ZnO. In conclusion, the performance of pigs fed rare earth mineral-yeast was basically equal to that of pigs fed antibiotics or ZnO indicating that rare earth mineral-yeast can be successfully used as a growth promoter in diets fed to nursery pigs. The effects of rare earth mineral-yeast appeared to be mediated through improvements in nutrient digestibility.

Status of EAF Dust Management in Taiwan (대만(臺灣)의 EAF 더스트(전기로(電氣爐) 제강소진(製鋼紹塵))의 처리(處理)에 관하여)

  • Chen, Wei-Sheng;Chou, Wei-Shan;Tsai, Min-Shing
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.3-13
    • /
    • 2011
  • Taiwan's annual steel production reached 21.29 million tons. EAF accounted for about half of this total, or 11.2 million tons in 2008. The other 10.09 million tons came from blast furnace and converter process methods. The annual EAF carbon steel production is about 9.76 million tons, and the quantity of dust generated from the EAF process is 160 thousand tons, or about 16kg of dust per ton of steel was produced. In 2009, there is Walez process for carbon steel EAF dust recycling, and the capacity is about 70,000 tons per year; and there is RHF/SAF process for stainless steel EAF dust, the capacity is 60,000 tons per year which is enough to treat stainless steel EAF dust in Taiwan. There are many new treatment facilities processes will be that introduced to recycle the EAF dust in the near future, these processes will perform smoothly and successfully in Taiwan. The estimation of recycled crude ZnO is about 90,000 tons each year. The recycling and upgrading crude zinc oxide will be the next important issue in Taiwn zinc and steel industry.

A Basic Study for Treating E.A.F. Dust by use of Waste Tire (폐타이어를 이용한 제강분진 처리를 위한 기초연구)

  • 황용길;이상화;이성룡;정석수;최재신;조충형
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.59-69
    • /
    • 1995
  • Distillation oI the dust generated during waste tue pyrolysis was perIomerl to rccover valuable metal sucll as zlnc. lead and iron. Pemcahilily and carnprcssivc tests were pursucd to ahlain the basic dala for cslraclian of zinc from the slntering propcrtp ol stccl making dusts and distilled carhon of waste tires as wcll as wastc pulp sludge mixlure hr~quet were investigated at various sinlcring lempcraturcs. Permeablllly rncieased with increastng amount of waste pulp in specil~cd istilled carhon due tn the fnrmat~ono f porusily in lhe sample TIE co~npress~vsctr ength showed the vanous values wlth different amDunl of dislilled-carhon adrlit~nilsa nd at diIIerenl sinlering tcmpcralures. X-ray diffifraction anvlyscs oI a hnquet rn~rhtre of steelmaking dusts(20Q didilled carhon and 10% waste pulp sblered ;>I SOOT) showcd thal the briquet consisted ot ZnO and Fc,O.,, hut was not found at the hriguet rintered at over 10OO'C. Crude zinc oxide sintered a1 IOOOC contained OZA Zn.

  • PDF

Unit Process Analysis for EAF Dust Plant Operation (전기로 분진 처리 조업의 공정 분석)

  • Moon, Seok-Min;Kim, Tai-Dong
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.80-85
    • /
    • 2014
  • Commercially operating EAF dust recycling processes were investigated by means of unit process analysis. Over 80 % of EAF recycling processes are Waelz kiln process adapted a rotary kiln as a main reactor. There are differences among these pyrometallurgical processes by plant location and timely important things such as environmental regulations. In this paper, the characteristics of each plants are analysed with the point of unit process.

The Study of Luppe Smelting with Converting Dust and Slag (제강전로 더스트와 슬래그를 이용한 루페제련에 관한 연구)

  • 황용길;이상화;김재일;김연수
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.39-45
    • /
    • 1998
  • We smelted thc pellets made by mixing the distilled carbon from wlISte Lires, LD converter dust and slag with reduction process in the revcrberatory furnace. Thc obtained results are as follows 1) The removal mte of zinc appears above 97% after T reducing the pellets at $1300^{\circ}C$ for Ihr and the zinc content in the residue are 0.1~D.2%. 2) Under the mixing condition of 500 g LD dust. 150-200 g LD slag and 30-50 g distilled carbon of waste lires the removal raho of zinc shows above 95%, while t the 50-60% Fe remains in the residue. 3) After smelting at $1350^{\circ}C$ for 3hrs, the recovery ratio of pig iron reduced from lhe p pellets containing 15-20% LD slag and 4.1-7.2% distilled carbon of waste tires appears in the range of 89.3-92%. 4) Tbe c chemical composition of the recovered pig iron is 1.7%C, O.05%P, 0.05%S and balance Fe. 5) Tbe recovered dust from the d dust collcctor alter finishing the reduction rcaction appears as a crude zinc oxide conLaining 60% zinc.

  • PDF

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).