• Title/Summary/Keyword: Crude Saponin

Search Result 294, Processing Time 0.02 seconds

Effect of Puffing on Quality Characteristics of Red Ginseng Tail Root (팽화처리가 홍미삼의 품질특성에 미치는 영향)

  • Hong, Hee-Do;Kim, Young-Chan;Kim, Sung-Soo;Sim, Gun-Sub;Han, Chan-Kyu
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • Effect of puffing treatment on saponins, total sugars, acidic polysaccharide, phenolic compounds, microstructure and pepsin digestibility of dried red ginseng tail root were tested. Puffing samples of dried red ginsneng tail root were pre-pared at 20rpm, 15 $kg/cm^2$, $120{\sim}150^{\circ}C$, and for 30 min by a rotary type apparatus of 5 L capacity. Crude saponin content of puffing red ginseng tail root was increased 26.5% compared to non-puffing, especially $Rg_3$ content was increased from 0.49 mg/g to 0.72 mg/g. Total sugar content was not changed, but acidic polysaccharide content was slightly decreased from 7.15% to 6.44% by puffing treatment. Total phenolic compounds was increased from 7.86% to 9.94% by puffing. In terms of individual phenolic compounds, salicylic acid was quantified in puffing tail root, but gentisic acid was quantified in non-puffing. Syringic acid was the most predominant phenolic acid, increased to about 6 times by puffing treatment. On the other hand, gallic acid, p-coumaric acid, caffeic acid and ferulic acid were highly decreased. Microstructure of cross-section in puffing tail root was shown to more uniform shape compared to non-puffing. Pepsin digestibilities of puffing and non puffing red ginseng tail root were 22.4% and 46.2%, respectively (p<0.05). The results indicated that puffing treatment might be useful increasing the bioactive components, preference and digestibility.

Comparison of quality characteristics of Platycodon grandiflorum according to steaming and fermentation (증숙 및 발효에 따른 도라지의 품질특성 비교)

  • Kim, So-Young;Lee, Ye-Jin;Park, Dong-Sik;Kim, Haeng-Ran;Cho, Yong Sik
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2015
  • This study was designed to improve the sensory characteristics and mitigate the bitter taste of Platycodon gradiflorum. It was aimed at investigating the qualitative properties of fermented P. gradiflorum after repeated steaming and drying treatments. P. gradiflorum was heated for 2 hr at $95^{\circ}C$, being the first and third treatments compared afterwards. Lactobacillus plantarum, at a concentration of 10%, was used as starter culture. As a result, the third steaming process and the addition of starter improved the physical and chemical properties of P. gradiflorum i.e., crude saponin and total polyphenol contents increased significantly. Moreover, P. gradiflorum steamed three times and fermented by L. plantarum showed the higher overall preference score. Our results indicated that the three-time steaming and drying was an effective manufacturing process for the production of high-quality fermented P. gradiflorum. Lactic acid-fermented P. gradiflorum also could have a potential use as a valuable resource for the development of functional products.

Aromatic Constituents and Essential Oil Content of Codonopsis lanceolata Trautv Cultivated at Different Altitudes (표고에 따른 더덕의 향기 성분과 정유 함량)

  • Kim, Sang-Kuk;Kang, Dong-Kyoon;Min, Gi-Gun;Chung, Sang-Hwan;Lee, Seong-Phil;Lee, Sang-Chul;Choi, Boo-Sull
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.1
    • /
    • pp.58-62
    • /
    • 1999
  • This study was to determine aromatic constituents and essential oil content in the root of Codonopsis lanceolata grown at different altitudes; Andong(150m), Mt. Hagka(550m) and Mt. Irwol(750m). Soil pH in Mt. Hagka and Mt. Irwol was 5.6 and 6.1, respectively, which was lower than in Andong(150m), but organic matter content was higher than that of Andong with 6.7 to 8.8%. Fresh root yield also increased as cultural region was located at higher altitude. In particular, yield in Mt. Irwol was 281kg/10a. Essential oil content was highest of 0.006% in the Mt. Irwo1. Forty-eight volatile aromatic compounds in the root of Codonopsis lanceolata were identified by GC/MS. Major aromatic compounds were 1-hexanol, cis-3-hexano1. and Trans-2-hexanol. In partucular, Trans-2-hexanol, was highest in Mt. Irwol attaining the 47.22% area. As a result, it was considered that cultural region above 700m in altitude was the most effective for the improvement of essential oil and aromatic constituents in the roots of Condonopsis lanceolata Trautv.

  • PDF

Qualify Characteristics of Baechukimchi Added Ginseng during Fermentation Periods (인삼이 첨가된 배추김치의 발효중 품질 특성)

  • Ku, Kyung-Hyung;Lee, Kyung-A;Park, Wan-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1444-1448
    • /
    • 2006
  • This study was investigated for quality characteristics of Baechukimchi with ginseng during fermentation. For Baechukimchi preparation, original ingredients of Baechukimchi and high contents of ginseng were used. In the initial pH and titratable acidity of each samples, ginseng -added Kimchi showed a little higher value than pH 5.48 and 0.25% acidity of the control Kimchi. Ginseng-added Kimchi showed higher values of total microbes $(1.90\times10^6\sim2.93\times10^6)$ and lactic acid bacteria $(2.21\times10^6\sim2.62\times10^6)$ than the control Kimchi. The control Kimchi was total microbes of $1.59\times10^5$ and lactic acid bacteria of $7.60\times10^4$. According to fermentation periods, ginseng-added Kimchi showed decrease of pH and increase of titratable acidity than the control Kimchi, but it. was not different for the microbes between Kimchi samples. In the taste intensity of sensory evaluation, ginseng-added Kimchi was evaluated higher value than the control Kimchi and kept up texture, properties of initial preparation between samples during fermentation periods. In the crude saponin content, raw ginseng was 5.89% by dry basis and it was decreased to 3.74% after fermentation. And the individual ginsenosides content of Re, $Rg_1$, Rf, $Rg_2,\;Rh_1,\;Rb_1,$, Rc, $Rb_2$, Rd, $Rg_3$, but $Rg_3$ were decreased and $Rh_1$ were increased from 16.6 mg%, and 22.2 mg/% to 59.2 mg%, and 39.4 mg%, respectively.

Changes on Physicochemical Properties of Panax ginseng C. A. Meyer during Repeated Steaming Process (증숙 횟수에 따른 고려인삼의 이화학적 특성 변화)

  • Hong, Hee-Do;Kim, Young-Chan;Rho, Jeong-Hae;Kim, Kyung-Tack;Lee, Young-Chul
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.222-229
    • /
    • 2007
  • Changes on physicochemical properties of fresh Korean ginseng during repeated 9 times steaming processes, steaming $90{\sim}95^{\circ}C$ for $1{\sim}3\;hr$ followed by hot air-drying at $50^{\circ}C$ for $36{\sim}48\;hr$, were investigated. The water contents decreased from 73.4% of fresh ginseng to 13.7% finally. The final yields in bases of total weights and dry matter were 21.0% and 79.0%, respectively. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powder. Browning index also rapidly increased after 3 times of steaming process in particular. Total water soluble sugar contents decreased from 55.4% in fresh to 38.6% in final processed ginseng, but acidic polysaccharide contents increased by about 50% with increasing times of steaming process. Total phenolic compound contents significantly increased with repeated steaming processes especially after 5 times of steaming processes and crude saponin contents also increased in some degree. In the case of major ginsenosides, the contents of $Rb_1$, $Rb_2$, $Rg_1$, Re (representative ginsenosides in fresh ginseng) decreased, but those of $Rg_2$, $Rh_1$, $Rg_3$ (unique ginsenosides in red ginseng) increased after especially 5 times of steaming processes.

Effects of Enzyme Treatment on Physicochemical Characteristics of Small Red Bean Percolate (팥 침출액의 이화학적 특성에 대한 효소처리의 영향)

  • Hwang, Cheol-Seung;Jeong, Do-Yeong;Kim, Yong-Suk;Na, Jong-Min;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.189-193
    • /
    • 2005
  • Effect of enzyme treatment on physicochemical characteristics of small tea bean percolate were estimated. Three types of small red bean percolate were prepared by heat treatment for 30 min at $95^{\circ}C$ (1st), 30 min at $95^{\circ}C$ (2nd), and 40 min at $120^{\circ}C$ (3rd). They were then treated with 0.5% ${\alpha}-amylase$ (v/v) for 4 hr at $108^{\circ}C$ (${\alpha}-amylase$ treatment), then with 0.5% ${\beta}-amylase$ (v/v) for 4 hr at $60^{\circ}C$ (${\alpha}-$ and ${\beta}-amylase$ treatment). Crude saponin contents of 1st-3rd percolates were 0.82, 1.44, and 1.52 mg/g, respectively. ${\circ}Brix$ of small red bean percolates treated with enzymes increased to $0.8-1.2\;{\circ}Brix$ with 2nd and 3rd percolates showing no significant difference between ${\alpha}-amylase$ and ${\alpha}-$ and ${\beta}-amylase$ treatments. pH of 3rd percolate treated with ${\alpha}-$ and ${\beta}-amylase$ decreased from initial 6.2 to 4.7. Hunter L value of small red bean percolate treated with ${\alpha}-$ and ${\beta}-$ decreased, whereas a and b values increased. Small red bean beverage made with 3rd percolate showed high score in flavor, taste, and overall acceptability. Results suggest small red bean percolate treated with enzymes could be used for preparation of small red bean beverage.

Optimization of Fermentation Condition for Red Ginseng Wine Using Response Surface Methodology. (반응표면분석을 이용한 홍삼주 발효조건 최적화)

  • Kim, Seong-Ho;Kang, Bok-Hee;Noh, Sang-Gyun;Kim, Jong-Guk;Lee, Sang-Han;Lee, Jin-Man
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.556-564
    • /
    • 2008
  • Response surface methodology was used to monitor the optimization of fermentation conditions for red ginseng wine. A central composite design was applied to investigate the effects of independent variables, fermentation temperature ($X_1$), fermentation time ($X_2$) and initial pH ($X_3$) on dependent variables, physicochemical characteristics and effective ingredients. Alcohol and total sugar content were significantly affected both by fermentation temperature and time. Crude saponin content was greatly affected by fermentation time, and pH was significantly affected by initial pH. Fermentation time and initial pH had a greater effect on ginsenoside content than fermentation temperature. Ginsenoside content increased along with fermentation time and initial pH. We elicited a regression formula for each variable, and superimposed the total optimum points of fermentation conditions for physicochemical characteristics and the effective constituents. The predicted values at the optimum fermentation conditions were at $21{\sim}27^{\circ}C$ for $15{\sim}20$ day in initial pH $4.6{\sim}5.2$.

Changes of General Components and Aromatic Constituents in Codonopsis lanceolata Grown at The Native and Cultivated Area (재배장소에 따른 더덕의 일반성분과 향기성분의 조성변화)

  • 이승필
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.230-238
    • /
    • 1996
  • The experiment was carried out to find aromatic constituent composition of Codonopsis lanceolata species grown in the native(Mt. lrwol, Youngyang, Kyungpuk Province) and the cultivated(Andong, Kyungpuk Province) areas from 1994 to 1995. The results were as follows : Air temperature and soil temperature at the native area were lower to $2{\sim}3^{\circ}C$, and to $2^{\circ}C$ than the cultivated area. Organic matter contents of plant grown at the native area higher than that of plants at the cultivated area by 4.8%. Crude protein content was higher in plant grown at native area than the plant grown in wild area but in case of crude saponin, plants grown at wild area was higher than that of native area. For inorganic element contents. K content is much higher than in the domesticated area as compared with wild area above ten over. And other elements such as Cu, Mn, Na and Mg were not remarkably different in contents. In the free amino acid compositions, argine was highest compared with other free amino acids, and Arginine content was higher in dometicated area. Recovery yield of essential oil of wild species grown at the cultivated showed 0.005%, but domesticated species was 0.004%. But both species at the native area were the same by 0.004%. Although composition of aromatic constituents in the two areas and species varied, total aromatic constituent was 21 kinds. Most aromatic constituents were aliphatic alcohols such as 1-hexanol, eis-3-hexanol, and trans-2-hexanol occupied by approximately 90% over. But three constituets as amylalcohol, furfuryl acetate, and 2-methoxy-4-vinyl phenol(MVP) were detected only in domesticated species.

  • PDF

Method for Supplementing Lecithin to Ginseng Extract (레시틴이 강화된 인삼 추출물 제조 방법)

  • Park, Soon-Hye;Kim, Il-Woong;Kim, Dong-Man;Kim, Si-Kwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1245-1250
    • /
    • 2006
  • This study was carried out to develop the method of preparing lecithin-fortified ginseng extract. Firstly, soybean lecithin was mixed with soybean oil (LCS) in varying ratio (2.5%, 5%, 10% and 20%). Then, one part volume of LCS was mixed with three parts volume of ginseng extract with 10% solid matter content and the mixture was vortexed vigorously. Finally, the mixture was spinned at the speed of 3,000 rpm for 30 minutes to separate oil and aqueous ginseng extract layer (AG). AG was then subjected to qualitative and quantitative analysis of phospholipids and ginsenosides. Fatty acid composition and crude fat content before and after LCS was determined. Stability of lecithin in ginseng extract was determined by analyzing phospholipid content in the one third upper and lower layer of the concentrated AG in Falcon tubes while storing the LCS treated concentrated AG in 4, 25 and 40oC for 6 months. Ratio of lecithin transferred to AG increased with the increase in lecithin content of soybean oil. There was no significant change in fatty acid composition and crude fat content, and ginsenoside content in the ginseng extract before and after LCS treatment. TLC and HPLC pattern of saponin fraction before and after treating the ginseng extract with LCS demonstrated no observable difference. There was no change in lecithin content in the upper and lower one third layer of ginseng extract in the tubes after storing the concentrated AG in 4, 25 and $40^{\circ}C$ for 6 months. Ginsenosides HPLC pattern was not changed when stored the LCS-treated ginseng extract in those conditions for six months, indicating satisfiable stability of the LCS-treated concentrated ginseng extract. From these results, it can be concluded that treatment of the ginseng extract with lecithin containing soybean oil is a labor effective method with satisfiable stability to fortify lecithins to ginseng extract.

Quality and Functional Properties of Red Ginseng Prepared with Different Steaming Time and Drying Methods (원료삼의 증삼 및 건조 조건별 홍삼의 품질 및 기능성)

  • Kim, Kyo-Youn;Shin, Jin-Ki;Lee, Su-Won;Yoon, Sung-Ran;Chung, Hun-Sik;Jeong, Yong-Jin;Choi, Myung-Sook;Lee, Chi-Moo;Moon, Kwang-Deog;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.494-499
    • /
    • 2007
  • The quality and functional properties of red ginseng in relation to steaming and drying conditions were evaluated. Fresh ginseng (5-year roots), cultivated in the Punggi region, were steamed for 2.5, 3.5, or 4.5 hr, and then dried by hot-air (60-$65^{\circ}C$/24 hr and $40^{\circ}C$,/3-4d) freezing ($-80^{\circ}C$/56 hr), and infrared (900 W/$62^{\circ}C$/68 hr). Hunter#s yellowness (b-value) and browning indexes (420 nm) of the samples were higher in the rootlets than in the main roots. Furthermore, these same index values were found to be high in the order of 3.5, 4.5, and 2.5 hr and infrared, hot-air, and freezing for steaming and subsequent drying, respectively. Analysis of soluble solids, total phenolics, total flavonoids, acidic polysaccharides, and electron donating abilities of the steamed and dried samples showed that 3.5hr of steaming with infrared drying was optimal. However, crude saponin contents were not influenced by steaming and drying conditions. The contents of $ginsenoside-Rg_l$, -Re, -Rf and $-Rb_2$, which were the major components in the samples, were reduced with steaming time, while the amounts of $-Rg_3$ and $-Rh_2$ increased, reaching the highest levels at 3.5 and 4.5 hr in the main roots and rootlets, respectively. The contents of $-Rg_3$ and $-Rh_2$ were similar in both the freeze-dried and hot-air dried samples.