• Title/Summary/Keyword: Crown Ether

검색결과 175건 처리시간 0.027초

Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

  • Lee, Kwang-Pill;Choi, Seong-Ho;Park, Yu-Chul;Bae, Zun-Ung;Lee, Mu-Sang;Lee, Sang-Hak;Chang, Hye-Yong;Kwon, Se-Mok;Kazuhiko Tanaka
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1324-1328
    • /
    • 2003
  • The simultaneous determination of anions ($SO_4 ^{2-},\;Cl^-,\;and\;NO_3^-$) and cations ($Na^+,\;NH^{4+},\;K^+,\;Mg^{2+},\;and\;Ca^{2+}$) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cationexchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the $H^+$-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

The Influence of Temperature, Ultrasonication and Chiral Mobile Phase Additives on Chiral Separation: Predominant Influence of β-Cyclodextrin Chiral Mobile Phase Additive Under Ultrasonic Irradiation

  • Lee, Jae Hwan;Ryoo, Jae Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4141-4144
    • /
    • 2012
  • This paper introduces a technique for resolving amino acids that combines the advantages of the conventional CSP (chiral stationary phase) method with the CMPA (chiral mobile phase additive) method. A commercially available chiral crown ether column, CROWNPAK CR(+), was used as the CSP and three cyclodextrins (${\beta}$-CD, ${\gamma}$-CD, HP-${\beta}$-CD) were used as the mobile phase additives. Chromatographic resolution was performed at $25^{\circ}C$ and $50^{\circ}C$ with or without sonication. A comparison of the chromatographic results under ultrasonic conditions with those under non-ultrasonic conditions showed that ultrasound decreased the elution time and enantioselectivity at all temperatures. In the case of the ${\beta}$-CD mobile phase additive, the elution time and enantioselectivity under ultrasonic condition were significantly higher than under non-sonic condition at all temperatures. Commercially available Chiralpak AD, Whelk-O2 and Pirkle 1-J columns were used as CSPs to examine more meticulously the effects of ultrasonication and temperature on the optical resolution. The optical resolution of some chiral samples analyzed at $25^{\circ}C$ and $50^{\circ}C$ with or without sonication was compared. As in the previous case, the enantioselectivity was lower at $25^{\circ}C$ but similar enantioselectivity was observed at $50^{\circ}C$.

Development of diverse fluorides source for applicable F-18 radiofluorination method

  • Park, Su Hong;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.17-21
    • /
    • 2016
  • Alkali metal fluoride sources (MFs) such as potassium fluoride (KF) have been widely used as a fluoride source in the nucleophilic displacement reaction. However, they have low solubility and nucleophilicity in most of the organic solvents. Bulky fluoride sources such as tetrabutylammonium fluoride (TBAF) were substituted for MFs to improve these properties. However, hygroscopic property of TBAF makes it less convenient for handling as well as its strong basic property can make the side-reaction occur. Recently, novel fluoride sources have been developed to solve these problems. In this paper, we would like to introduce coordinated fluoride sources as a new fluoride sources such as tetrabutylammonium tetra(t-butyl alcohol)-coordinated fluoride, crown ether metal complex fluoride, and various bulky alcohols coordinated fluoride complexes. In particular, bulky alcohol coordinated fluoride source could generated by the controlled hydrogen-bonded of fluoride with alcohols and these fluoride sources have better stability and reactivity with showing low hygroscopic property. The study of these fluoride sources will help to understand the characteristic of [$^{18}F$]fluoride for increasing the radiochemical yield in the [$^{18}F$]radiofluorination.

The Catalytic Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 2-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • 음익환;이성은;민지숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.669-672
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the title reactions. The plot of kobs vs the concentration of alkali metal ethoxides is linear for the reactions performed in the presence of complexing age nt, 18-crown-6 ether, but curved upwardly for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions studied in this study behave as a catalyst. The catalytic effect was found to increase in the order Li+ << K+ ${\leq}$ Na+. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M+ ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M+/kEtO-) was found to be 2.3, 9.5 and 8.7 for the reaction of 8-(5-nitroquinolyl) 2-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, indicating that the catalytic effect is larger in the reaction of the former substrate than in that of the latter one. The larger catalytic effect was attributed to two possible complexing sites with alkali metal ions in the former substrate.

The Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 3-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • 음익환;이성은;민지숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.673-677
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the reactions of 8-(5-nitroquinolyl) 3-furoate with alkali metal ethoxides in anhydrous ethanol. The plot of kobs vs the concentration of alkali metal ethox ides is linear for the reactions performed in the presence of a complexing agent, 18-crown-6 ether, but exhibits upward curvatures for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions in this study behave as catalysts. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M + ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M + /kEtO-) was found to be 1.7, 3.4 and 2.5 for the reaction of 8-(5-nitroquinolyl) 3-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, 1.8, 3.7 and 2.4 for that of 8-(5-nitroquinolyl) benzoate, and 2.0, 9.8 and 9.3 for that of 8-(5-nitroquinolyl) 2-furoate with EtO- Li+ , EtO- Na+ and EtO- K+ , respectively. A 5-membered chelation at the leaving group is suggested to be responsible for the catalytic effect shown by alkali metal ions.

비이온성 계면활성제의 미셀 형성에 미치는 $Mg^{2+}$의 영향 (The Effects of $Mg^{2+}$ on the Micelle Formation of Nonionic Surfactants)

  • 권오윤;김정성;백우현
    • 대한화학회지
    • /
    • 제37권9호
    • /
    • pp.781-786
    • /
    • 1993
  • $Mg^{2+}$ 존재하에서 비이온성 계면활성제 $nonylphenol-(ethylene oxide)_n$[NP-nEO; n = 12, 40, 100]와 요오드간의 상호작용을 UV-visible spectrophotometer를 이용하여 수용액 중에서 조사하였다. CMC (Critical micelle concentration)는 $Mg^{2+}$ 농도 증가에 따라 감소하였으며, 그 감소폭은 EO(ethylene oxide) 수에 크게 의존하였다. CMC 이상에서 $Mg^{2+}$ 첨가에 따른 상호작용 피크와 강도는 증가하다가 감소하는 변곡점을 보였다. 상호작용 피크의 강도 증가는 $Mg^{2+}$ 존재하에서 미셀구조가 더욱 조밀해진데 따른 요오드와의 전자주게-받게 겹침증가로 볼 수 있다. 이러한 현상들은 비이온성 계면활성제 미셀표면에 노출된 EO 사슬이 유사크라운에테르 구조를 형성하여 $Mg^{2+}$ 의 착물을 형성할 수 있는 가능성을 보여준다.

  • PDF

Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl

  • Um, Ik-Hwan;Kang, Ji-Sun;Kim, Chae-Won;Lee, Jae-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.519-523
    • /
    • 2012
  • A kinetic study is reported on nucleophilic displacement reactions of benzyl 2-pyridyl carbonate 6 with alkalimetal ethoxides, EtOM (M = Li, Na, and K), in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of pseudo-firstorder rate constant $k_{obsd}$ vs. [EtOM] curve upward, a typical phenomenon reported previously for alkaline ethanolysis of esters in which alkali-metal ions behave as a Lewis-acid catalyst. The kobsd value for the reaction of 6 with a fixed EtOK concentration decreases rapidly upon addition of 18-crown-6-ether (18C6), a complexing agent for $K^+$ ion up to [18C6]/[EtOK] = 1.0 and then remains constant thereafter, indicating that the catalytic effect exerted by K+ ion disappears in the presence of excess 18C6. The reactivity of EtOM towards 6 increases in the order $EtO^-$ < EtOLi < EtONa < EtOK, which is contrasting to the reactivity order reported for the corresponding reactions of 2-pyridyl benzoate 4, i.e., $EtO^-$ < EtOK < EtONa < EtOLi. Besides, 6 is 1.7 and 3.5 times more reactive than 4 towards dissociated $EtO^-$ and ion-paired EtOK, respectively. The reactivity difference and the contrasting metal-ion selectivity are discussed in terms of electronic effects and transition-state structures.

Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted Benzoates with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Seo, Jin-A;Kim, Song-I;Hong, Yeon-Ju;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.303-308
    • /
    • 2010
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl benzoate (5a), 4-nitrophenyl 4-methoxybenzoate (5b), and 4-nitrophenyl 4-hydroxybenzoate (5c) with alkali metal ethoxides, $EtO^-M^+$ ($M^+=Li^+$, $Na^+$ and $K^+$) in anhydrous ethanol (EtOH) at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [$EtO^-M^+$] exhibit upward curvatures in all cases, indicating that $M^+$ ions catalyze the reactions and ionpaired $EtO^-M^+$ species are more reactive than dissociated $EtO^-$. Second-order rate constants for reactions with dissociated $EtO^-$ and ion-paired $EtO^-M^+$ (i.e., $k_{EtO^-}$ and $k_{EtO^-M^+}$, respectively) have been calculated from ion-pair treatment for the reactions of 5a and 5b. However, such ion-pair treatment has failed to determine $k_{EtO^-}$ and $k_{EtO^-M^+}$ values for the reactions of 5c. It has been concluded that reactions of 5a and 5b are catalyzed by one metal ion, which increases electrophilicity of the reaction center through coordination on the carbonyl oxygen. In contrast, reactions of 5c have been suggested to involve two metal ions, i.e., the one coordinated on the carbonyl oxygen increases the electrophilicity of the reaction center while the other one associated on the phenoxy oxygen decreases the charge repulsion between the anionic reagents (i.e., $EtO^-$ and deprotonated 5c). It has been found that the rate equation derived from the mechanism involving two metal ions fits nicely to the kinetic results obtained for the reactions of 5c.

함초(Saliconia herbacea L.)로부터 베타인 정량 (Determination of Betaine from Saliconia herbacea L.)

  • 이창호;김인호;김영언;오세욱;이호준
    • 한국식품영양과학회지
    • /
    • 제33권9호
    • /
    • pp.1584-1587
    • /
    • 2004
  • 해안가 및 폐염전 등에 서식하며 각종 미네랄, 아미노산 및 유용 생리활성 물질을 함유하고 있는 함초로부터 혈중 동맥경화 및 심장 질환 예방에 유효한 효능을 보일 것으로 예상되는 성분인 betaine을 HPLC를 이용하여 분석하였다. 함초는 양쪽성 물질로 같이 존재하는 다른 이온성 물질들에 의해 방해를 받으며 UV 흡수가 매우 낮아 일반적인 정량방법으로는 분석이 매우 까다롭다. 따라서 본 연구에서는 이러한 문제를 해소하기 위하여 2단계 이온교환수지 컬럼을 이용하여 방해물질을 제거한 후 betaine을 4-bromophenacyl bromide (PBPB)로 유도체화시켜 UV-labelling 한 후 분석하였다. 이온교환수지를 통과한 함초추출물의 회수율은 83.6%이며 함초추출액 mL당 4.85mg의 betaine이 함유되어 있는 것으로 나타났다.

Kinetic Study on Nucleophilic Substitution Reaction of 5-Nitro-8-quinolyl Benzoate, Picolinate, Nicotinate and Isonicotinate with Alkali Metal Ethoxide: Effect of Nonleaving Group on Reactivity and Transition State Structure

  • Lee, Jieun;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1789-1793
    • /
    • 2014
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the reactions of 5-nitro-8-quinolyl nicotinate (4) and 5-nitro-8-quinolyl isonicotinate (5) with alkali metal ethoxides (EtOM; M = K, Na and Li) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [EtOM] curve slightly upward for the reactions with EtOK and EtONa but are linear for the reactions with EtOLi and for those with EtOK in the presence of 18-crown-6-ether. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the reactivity increases in the order $EtO^-{\approx}EtOLi$ < EtOK < EtONa for the reactions of 4 and EtOLi < $EtO^-$ < EtOK < EtONa for the reactions of 5. Comparison of the kinetic results for the reactions of 4 and 5 with those reported previously for the corresponding reactions of 5-nitro-8-quinolyl benzoate (2) and picolinate (3) has revealed that the esters possessing a pyridine ring (i.e., 3-5) are significantly more reactive than the benzoate ester 2 due to the presence of the electronegative N atom (e.g., 2 << 3 < 4 < 5). It has been concluded that $M^+$ ion catalyzes the reactions of 3-5 by increasing the electrophilicity of the reaction center through a five-membered cyclic transition state (TS) for the reaction of 3 and via a four-membered cyclic TS for the reactions of 4 and 5.