DOI QR코드

DOI QR Code

The Catalytic Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 2-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol


Abstract

Pseudo-first-order rate constants have been measured spectrophotometrically for the title reactions. The plot of kobs vs the concentration of alkali metal ethoxides is linear for the reactions performed in the presence of complexing age nt, 18-crown-6 ether, but curved upwardly for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions studied in this study behave as a catalyst. The catalytic effect was found to increase in the order Li+ << K+ ${\leq}$ Na+. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M+ ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M+/kEtO-) was found to be 2.3, 9.5 and 8.7 for the reaction of 8-(5-nitroquinolyl) 2-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, indicating that the catalytic effect is larger in the reaction of the former substrate than in that of the latter one. The larger catalytic effect was attributed to two possible complexing sites with alkali metal ions in the former substrate.

Keywords

References

  1. Chem. Soc. Rev. v.10 Jencks, W. P.
  2. J. Phys. Org. Chem. v.9 Jencks, W. P.
  3. J. Org. Chem. v.62 Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I.
  4. New J. Chem. v.21 Koh, H. J.; Kim, S. I.; Lee, B. C.; Lee, I.
  5. Bull. Korean Chem. Soc. v.21 Koo, I. S.; Yang, K.; An, S. K.; Lee, C. K.; Lee, I.
  6. Bull. Korean Chem. Soc. v.20 Koo, I. S.; Lee, J. S.; Yang K.; Kang, K.; Lee, I.
  7. Acc. Chem. Res. v.22 Williams, A.
  8. Adv. Phys. Org. Chem. v.27 Williams, A.
  9. Chem. Soc. Rev. v.23 Williams, A.
  10. Acc. Chem. Res. v.25 Suh, J.
  11. J. Am. Chem. Soc. v.114 Suh, J.; Park, T. H.; Hwang, B. K.
  12. Acc. Chem. Res. v.26 Fife, T. H.
  13. J. Org. Chem. v.52 Fife, T. H.; Natarajan, R.; Werner, M. H.
  14. Chem. Soc. Rev. v.24 Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E.
  15. Can. J. Chem. v.67 Dunn, E. J.; Buncel, E.
  16. Can. J. Chem. v.68 Pregel, M.; Dunn, E. J.; Buncel, E.
  17. Tetrahedron Lett. v.33 Um, I. H.; Yong, J. I.; Kwon, D. S.; Ahn, B. T.; Lee, I.
  18. Bull, Korean Chem. Soc. v.19 Um, I. H.; Hong, Y. J.; Lee, Y. J.
  19. J. Chem. Soc. Perkin Trans. 2 Mentz, M.; Modro, T. A.
  20. Can. J. Chem. v.72 Mentz, M.; Modro, T. A.; Modro, A. M.
  21. Collect. Czech. Chem. Commun. v.47 Pechanec, V.; Kocian, O.; Zavada, J.
  22. Acc. Chem. Res. v.11 Lehn, J. M.
  23. Writing Reaction Mechanisms in Organic Chemistry Miller, A.; Solomon, P. H.
  24. Bull. Korean Chem. Soc. v.19 Um, I. H.; Hong, Y. J.; Lee, Y. J.
  25. Advances in Linear Free Energy Relationship Chapman, N. B., Shorter, J., Eds.
  26. Chem. Rev. v.99 Castro, E. A.
  27. J. Org. Chem. v.64 Castro, E. A.; Saavedra, C.; Santos, J. G.; Umana, M. J.
  28. J. Org. Chem. v.64 Castro, E. A.; Munoz, P.; Santos, J. G.
  29. J. Org. Chem. v.65 Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J.
  30. Can. J. Chem. v.77 Um, I. H.; Min, J. S.; Lee, H. W.
  31. J. Am. Chem. Soc. v.99 Gresser, M. J.; Jencks. W. P.
  32. Chem. Commun. Um, I. H.; Kim, M, J.; Lee, H. W.
  33. Bull. Korean Chem. Soc. v.21 Ahn, B. T.; Park, H. S.; Lee, E. J.; Um, I. H.
  34. J. Am. Chem. Soc. v.122 Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P.; Page, M. I.
  35. J. Am. Chem. Soc. v.212 Zhang, M.; Brauman, J. I.
  36. J. Am. Chem. Soc. v.120 Adalsteinson, H.; Bruice, T. C.
  37. J. Am. Chem. Soc. v.119 Hess, R. A.; Hengge, A. C.; Cleland, W. W.
  38. J. Am. Chem. Soc. v.116 Hengge, A. C.; Hess, R. A.
  39. J. Chem. Soc. Perkin Trans. 2 Neuvonen, H.; Neuvonen, K.