Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.6.1789

Kinetic Study on Nucleophilic Substitution Reaction of 5-Nitro-8-quinolyl Benzoate, Picolinate, Nicotinate and Isonicotinate with Alkali Metal Ethoxide: Effect of Nonleaving Group on Reactivity and Transition State Structure  

Lee, Jieun (Gocheok High School)
Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University)
Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Abstract
Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the reactions of 5-nitro-8-quinolyl nicotinate (4) and 5-nitro-8-quinolyl isonicotinate (5) with alkali metal ethoxides (EtOM; M = K, Na and Li) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [EtOM] curve slightly upward for the reactions with EtOK and EtONa but are linear for the reactions with EtOLi and for those with EtOK in the presence of 18-crown-6-ether. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that the reactivity increases in the order $EtO^-{\approx}EtOLi$ < EtOK < EtONa for the reactions of 4 and EtOLi < $EtO^-$ < EtOK < EtONa for the reactions of 5. Comparison of the kinetic results for the reactions of 4 and 5 with those reported previously for the corresponding reactions of 5-nitro-8-quinolyl benzoate (2) and picolinate (3) has revealed that the esters possessing a pyridine ring (i.e., 3-5) are significantly more reactive than the benzoate ester 2 due to the presence of the electronegative N atom (e.g., 2 << 3 < 4 < 5). It has been concluded that $M^+$ ion catalyzes the reactions of 3-5 by increasing the electrophilicity of the reaction center through a five-membered cyclic transition state (TS) for the reaction of 3 and via a four-membered cyclic TS for the reactions of 4 and 5.
Keywords
Metal ion catalysis; Reaction mechanism; Transition state; Electrophilicity; Nucleofugality;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 (b) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; Chapt. 8.5.
2 (c) Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw Hill: New York, 1969; Chapt. 10.
3 (c) Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439.   DOI   ScienceOn
4 (a) Jeon, S. H.; Yoon, J. H.; Kim, M. Y.; Um, I. H. Bull. Korean Chem. Soc. 2014, 35, in press.
5 (c) Um, I. H.; Shin, Y. H.; Park, J. E.; Kang, J. S.; Buncel, E. Chem. Eur. J. 2012, 18, 961-968.   DOI   ScienceOn
6 (e) Um, I. H.; Lee, S. E.; Hong, Y. J.; Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 117-121.   DOI   ScienceOn
7 (f) Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K. Y.; Buncel, E. J. Org. Chem. 2008, 73, 923-930.   DOI   ScienceOn
8 Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411.   DOI
9 Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113.
10 Windholz, M.; Budavari, S.; Blumetti, R. F.; Otterbein, E. S. The Merck Index, 10th ed.; Merck & Co.: N. J., 1983.
11 (a) Um, I. H.; Hong, Y. J.; Kwon, D. S. Tetrahedron 1997, 53, 5073-5082.   DOI   ScienceOn
12 (b) Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480.   DOI   ScienceOn
13 (b) Feng, G.; Tanifum, E. A.; Adams, H.; Hengge, A. C. J. Am. Chem. Soc. 2009, 131, 12771-12779.   DOI   ScienceOn
14 (c) Mohamed, M. F.; Sanchez-Lombardo, I.; Neverov, A. A.; Brown. R. S. Org. Biomol. Chem. 2012, 10, 631-639.   DOI   ScienceOn
15 (d) Barrera, I. F.; Maxwell, C. I.; Neverov, A. A.; Brown, R. S. J. Org. Chem. 2012, 77, 4156-4160.   DOI   ScienceOn
16 (a) Mitic, N.; Hadler, K. S.; Gahan, L. R.; Hengge, A. C.; Schenk, G. J. Am. Chem. Soc. 2010, 132, 7049-7054.   DOI   ScienceOn
17 (c) Humphry, T.; Iyer, S.; Iranzo, O.; Morrow, J. R.; Richard, J. P.; Paneth, P.; Hengge, A. C. J. Am. Chem. Soc. 2008, 130, 17858-17866.   DOI   ScienceOn
18 (d) Davies, A. G. J. Chem. Res. 2008, 361-375.
19 (a) Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752.   DOI
20 (b) Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716.   DOI
21 (a) Lee, J. H.; Park, J.; Lah, M. S.; Chin, J.; Hong, J. I. Org. Lett. 2007, 9, 3729-3731.   DOI   ScienceOn
22 (c) Livieri, M.; Mancin, F.; Tonellato, U.; Chin, J. Chem. Commun. 2004, 2862-2863.
23 (a) Chei, W. S.; Ju, H.; Suh, J. Bioorg. Med. Chem. Lett. 2012, 22, 1533-1537.   DOI   ScienceOn
24 (b) Chei, W. S.; Ju, H.; Suh, J. J. Biol. Inorg. Chem. 2011, 16, 511-519.   DOI
25 (a) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610.   DOI   ScienceOn
26 (b) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475.   DOI   ScienceOn
27 (b) Aguayo, R.; Arias, F.; Canete, A.; Zuniga, C.; Castro, E. A.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2013, 45, 202-211.   DOI   ScienceOn
28 (c) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524.   DOI   ScienceOn
29 (d) Jencks, W. P. Chem. Rev. 1985, 85, 511-527.   DOI
30 (a) Pavez, P.; Millan D.; Morales, J. I.; Castro, E. A.; Lopez, A. C.; Santos, J. G. J. Org. Chem. 2013, 78, 9670-9676.   DOI   ScienceOn
31 (a) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430.   DOI   ScienceOn
32 (b) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284.   DOI   ScienceOn
33 (c) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629.   DOI   ScienceOn
34 (a) Um, I. H.; Bae, A. R.; Um, T. I. J. Org. Chem. 2014, 79, 1206-1212.   DOI   ScienceOn
35 (a) Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696.
36 (b) Castro, E. A. J. Sulfur Chem. 2007, 28, 401-429.   DOI   ScienceOn
37 (b) Um, I. H.; Bae, A. R. J. Org. Chem. 2012, 77, 5781-5787.   DOI   ScienceOn
38 (c) Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515.   DOI   ScienceOn
39 (d) Um, I. H.; Han, J. Y. J. Org. Chem. 2009, 74, 3073-3078.   DOI   ScienceOn
40 (e) Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677.   DOI   ScienceOn
41 (a) Neverov, A. A.; Chen, L. D.; George, S.; Simon, D.; Maxwell, C. I.; Brown, R. S. Can. J. Chem. 2013, 91, 1139-1146.   DOI   ScienceOn
42 (b) Maxwell, C. I.; Mosey, N. J.; Brown, R. S. J. Am. Chem. Soc. 2013, 135, 17209-17222.   DOI   ScienceOn
43 (b) Um, I. H.; Kang, J. S.; Shin, Y. H.; Buncel, E. J. Org. Chem. 2013, 78, 490-497.   DOI   ScienceOn
44 (a) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapt. 7.
45 (d) Um, I. H.; Seo, J. A.; Mishima, M. Chem. Eur. J. 2011, 17, 3021-3027.   DOI   ScienceOn
46 Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper & Row: New York, 1987; pp 178-180.
47 (b) Livieri, M.; Manicin, F.; Saielli, G.; Chin, J.; Tonellato, U. Chem. Eur. J. 2007, 13, 2246-2256.   DOI   ScienceOn