• Title/Summary/Keyword: Cross-Coupled

Search Result 505, Processing Time 0.022 seconds

Derivation of Transfer Function for the Cross-Coupled Filter Systems Using Chain Matrices

  • Um, Kee-Hong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2018
  • In this paper, we derive a transfer function of cross-coupled microwave filter systems by using a characteristics of chain matrices. Depending on the lumped element of capacitor or inductor, the cross-coupled system is negatively- or positively system. We used a ladder network as a starting system composed of several subsystems connected in chain. Each subsystem is descrived by Laplace impedance. By solving the transmission zero characteristic equation derived from the cascaded subsystems, we can find the zeros of filter system with externally cross-coupled lumped elements. With the cross-coupled elements of capacitors, the numerator polynomial of system transfer function is used to locate the quadruplet zeros in complex plane. We show the polynomoials of numerator and denominator of cascaded transfer function, obtaining the zeros of the cross-coupled system.

Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller (퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어)

  • 신두진;허욱열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

Comparison of Two Layout Options for 110-GHz CMOS LC Cross-Coupled Oscillators

  • Kim, Doyoon;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.141-143
    • /
    • 2018
  • Two 110-GHz oscillators have been developed in 65-nm CMOS technology. To study the effect of layout on the circuit performance, both oscillators had the same LC cross-coupled topology but different layout schemes of the circuit. The oscillator with the conventional cross-coupled design (OSC1), showed an output power of -3.9 dBm at 111 GHz with a phase noise of -75 dBc/Hz at 1-MHz offset. On the other hand, OSC2, with a modified cross-coupled line layout, generated an output power of -2.0 dBm at 117 GHz with a phase noise of -77 dBc/Hz at 1-MHz offset. The result indicates that the optimized layout can improve key oscillator performances such as oscillation frequency and output power.

Complex Quadruplet Zero Locations from the Perturbed Values of Cross-Coupled Lumped Element

  • Um, Kee-Hong
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, complex quadruplet zeros of microwave filter systems are investigated. For the cascaded systems the chain matrices are most conveniently used to derive the voltage transfer function of Laplace transform with cascaded two-port subsystems. The convenient relations of transfer function and chain matrix are used in order to find the transmission zeros. Starting from a ladder network, we introduced a crossed-coupled lumped element, in order to show the improved response of bandpass filter. By solving the transmission zero characteristic equation derived from the cascaded subsystems, we found the zeros of filter system with externally cross-coupled lumped elements. With the cross-coupled elements of capacitors, the numerator polynomial of system transfer function is used to locate the quadruplet zeros in complex plane. When the two pairs of double are on the zeros -axis, with the perturbed values of element, we learned that the transition band of lowpass filter is improved. By solving the characteristic equation of cascaded transfer function, we can obtain the zeros of the cross-coupled filter system, as a result of perturbed values on lumped element.

Design of Microstrip Band-Pass filters Using Cross-Coupled Hairpin Resonators (교차결합 헤어핀 공진기를 이용한 마이크로스트립 대역통과 여파기 설계)

  • 오창근;전성근;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.557-564
    • /
    • 2000
  • A microstrip band-pass filter using cross-coupled resonators is designed and studied experimentally. The cross-coupled microstrip hairpin resonator filters exhibit ripples in both passband and stopband. These ripples can improve both frequency selectivity and insertion loss. The cross-coupled filters are not only simple and compact in configuration, but also have great flexibility to form filters into a variety of size. In this paper, a microstrip band-pass filter using cross-coupled resonators is designed at the center frequency of 1.8GHz with bandwidth of 5.0% using Ensemble software. The experimental results show that the bandwidth is about 4.53% at 1.8GHz.

  • PDF

Optimal Tuning of Biaxial Servomechanisms Using a Cross-coupled Controller (상호결합제어기를 이용한 2축 서보메커니즘의 최적튜닝)

  • Bae Ho-Kyu;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1209-1218
    • /
    • 2006
  • Precision servomechanisms are widely used in machine tool, semiconductor and flat panel display industries. It is important to improve contouring accuracy in high-precision servomechanisms. In order to improve the contouring accuracy, cross-coupled control systems have been proposed. However, it is very difficult to select the controller parameters because cross-coupled control systems are multivariable, nonlinear and time-varying systems. In this paper, in order to improve contouring accuracy of a biaxial servomechanism, a cross-coupled controller is adopted and an optimal tuning procedure based on an integrated design concept is proposed. Strict mathematical modeling and identification process of a servomechanism are performed. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servomechanism. The objective of the optimal tuning procedure is to minimize both the contour error and the settling time while satisfying constraints such as the relative stability and maximum overshoot conditions, etc. The effectiveness of the proposed optimal tuning procedure is verified through experiments.

Optimal Design of a Flextensional Transducer Considering All the Cross-coupled Effects of the Design Variables (설계변수들의 상호효과를 고려한 Flextensional 트랜스듀서의 최적설계)

  • 강국진;노용래
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.364-374
    • /
    • 2003
  • The performance of an acoustic transducer is determined by the effects of many design variables. and mostly the influences of these design variables are not linearly independent of each other To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study with the FEM. we analyzed the variation of the resonance frequency and sound pressure of a flextensional transducer in relation to Its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency and sound pressure in terms of the design variables, and with which we determined the optimal structure of the transducer by means of a constrained optimization technique, SQP-PD. The proposed method can reflect all the cross-coupled effects of multiple design variables, and can be utilized to the design of general acoustic transducers.

Cross Type Domain in Exchange-Coupled NiO/NiFe Bilayers

  • Hwang, D.G;Kim, J.K;Lee, S.S;Gomez, R.D
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • The dependences of microscopic magnetic domain on film thickness in unidirectional and isotropic exchange-coupled NiO/NiFe bilayers were investigated by magnetic force microscopy to better understand for exchange biasing. As NiO thickness increases, microscopic domain structure of unidirectional biased film changed to smaller and more complicated domains. However, for isotropic-coupled film a new cross type domain appeared with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing fields and the fact that the domain was originated by the strongest exchange coupling region was confirmed from the dynamic domain configuration during a magnetization cycle.