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Abstract

In this paper, we derive a transfer function of cross-coupled microwave filter systems by using a 

characteristics of chain matrices. Depending on the lumped element of capacitor or inductor, the cross-coupled 

system is negatively- or positively system. We used a ladder network as a starting system composed of several 

subsystems connected in chain. Each subsystem is descrived by Laplace impedance. By solving the 

transmission zero characteristic equation derived from the cascaded subsystems, we can find the zeros of filter 

system with externally cross-coupled lumped elements. With the cross-coupled elements of capacitors, the 

numerator polynomial of system transfer function is used to locate the quadruplet zeros in complex plane. We 

show the polynomoials of numerator and denominator of cascaded transfer function, obtaining the zeros of the 

cross-coupled system.

Keywords: Ladder network, Negative cross-coupling (NCC), transmission zeros, Cross-coupling, Bridged-T 

subsystem

1. Introduction
The transfer function in the s-domain is the ratio of the Laplace transform of output signal (response) to 

the Laplace transform of the input signal (source). The zeros of the numerator polynomial in the transfer 

function is transmission zeros, which blocks the flow of signals from input to output terminals. To define 

the transfer function, the linear system is assumed to be a circuit where all initial conditions are zero. In this 

paper we show the procedures to derive the transfer function of cross-coupled system.

2. Transmission zeros from chain matrix

The entry � can be calculated from the entry (1, 1) of the (2 × 2)	chain matrix ��, 

� = ��(1, 1)  (1)

A voltage transfer function can be expressed as 
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The voltage transfer function can be expressed in terms of the entry �

H(s) =
�

�
=

�

�(�,�)
=

�(�)

�(�)
									(3)

Equation (3) tells that if the entry (1.1) of the chain matrix is known the transfer function can be obtained

[1, 2]. The chain matrix of n cascaded networks can be represented as the product of each of the chain 

matrix

by [3]

�� = 	 �
� �
� �

� = ∏ �
�� ��
�� ��

��
��� = ∏ ����

���       (4)

3. The Ladder Network
A ladder network is composed of series-connected and parallel-connected elements. The pattern is that 

every other element is alternatively in series-connected and shunt-connected as a signal travels from the 

source to the load. The important types of filters based on the resonators skipped are the three cases [3, 4]:

1) Without skipping any resonators (adjacent resonators),

2) Skipping one resonator,

3) Skipping two resonators. 

In this paper the first case is considered. When more than three resonators are skipped, they can be 

simplified to no. 2 or no. 3 above. Then the analysis follows the same procedure. In each case of filter 

configurations, coupling can be achieved in two different types: one is negative cross-coupling (NCC); the 

other is positive cross-coupling (PCC). Negative cross coupling means that the sign of cross coupling 

opposes the sign of the main line coupling (i.e. capacitive cross coupling in an inductively coupled circuit, or 

inductive cross coupling in a capacitive coupled main line). In a negatively cross-coupled implementation, 

the series-connected elements are all inductors (or capacitors) and the cross-coupled element is a capacitor 

(or inductor). These two filters have the same locations for the finite frequency TZ’s (but not for infinite 

frequency or DC TZ’s, and not necessarily the same TP’s. In a positively cross-coupled implementation, the 

series-connected elements are all inductors (or capacitors) and the cross-coupled element is an inductor (or a 

capacitor). These two filters have the same TZ locations. A cross-coupled filter network skipping one 

resonator is first analyzed, for negative cross coupling.

4. Cross-coupled (CC) Filter Configuration
A cross-coupled filter of Figure 1 is considered. The cascaded chain matrices of five subsystems sectioned 

is used to conveniently represent the system. For the cross-coupled subsystem an equivalent system in the 

form of bridged-T network can be used to determine chain matrices. The analysis on the cross-coupled 

microwave filters also will show the sectioning the whole filter system into several subsystems. The 



Derivation of Transfer Function for the Cross-Coupled Filter Systems Using Chain Matrices                            9

chain-parameters for each subsystem are derived.  Since the cross-coupled circuit is the bridged-T structure, 

the chain parameters of the structure are first found. With all the chain parameters, the transfer function is 

found [5, 6].

Figure 1. A block diagram of cross-coupled filter network.

From the transfer function, the locations of TZ’s are found from the canonical form of the numerator 

polynomial of the transfer function. The whole filter network is considered to be composed of five 

subsystems cascaded. Since the cross-coupled subsystem S3 is the bridged-T structure, the chain parameters 

of this structure are first to be determined. With all the chain parameters determined for the five subsystems, 

the transfer function is found.  As stated above, from the transfer function, the locations of TZ’s are found 

from the canonical form of the numerator polynomial of the transfer function. The overall filter network is 

sectioned into five subsystems (Si, i =1-5) as shown in Figure 2.4.  Each system is characterized by its own 

chain matrix of size 2 2´ .

	�� = 	 �
� �
� �

� = � = ��� 	 ∙ 	��� 	 ∙ 	 ��� 	 ∙ 	��� 	 ∙ ���    (5)

In Equation (5), each entry of five chain matrices must be expressed in terms of Laplace impedance 

shown in the Figure 1. In the figure  above,  Zm  and Zmn as used herein are  defined by

mZ : The Laplace impedance of the m-th  subsystem with only one element.

mnZ : The Laplace impedance of the n-th element  of the m-th subsystem, 

with more than one element.

For example, 2Z means the Laplace impedance of the element of the 2nd subsystem, and 32Z means the 

Laplace impedance of the 2nd element of 3rd subsystem. Following the definitions above, the Z2, Z34, Z41 

and Z42  represent the impedances due to the shunt-connected tank circuits composed of  (L2, C2), (L34, 

C34), (L41, C41), and (L42, C42), respectively. In the figure above, all impedances are consisted of 

inductors (capacitors) and all shunt impedances are consisted of parallel LC’s. Impedances Z31, Z32, and 

Z43 are due to series-connected inductors L31, L32, and L43, or capacitors C31, C32, and C43, respectively. 

For a negatively cross-coupled network, impedance Z33 is due  to  a  single  cross-coupled capacitor 

( or inductor)  C33 (or L33), while for a positively cross-coupled network, impedance Z33 is due to a single

cross-coupled inductor (or capacitor) L33 ( or C33), respectively. The impedances Z1 and Z5 represent 

source and load impedances of 50 Ohms.
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5. Negatively Cross-coupled (NCC) Filter Network
In Figure 2, the series-connected elements are all inductors. A negatively cross-coupled filter network is 

obtained by using capacitor impedance for Z33 connected between the 1st and the 3rd resonators, as shown in 

Figure. If the series-connected elements are all capacitors, the cross-coupled (CC) elements should be an 

inductor to result in the same locations for the TZ’s.  Here is the first case to be considered. A 

cross-coupled circuit, or a bridge-T circuit, is installed from the 1st resonator (Z2) and the 3rd resonator (Z41). 

The whole system is considered to be composed of five subsystems (S1, S2, S3, S4, and S5) connected in 

cascade. Therefore, the chain (ABCD) matrix of the whole system is used. Each entry of five chain matrices 

must be expressed in terms of Laplace impedance shown in the Figure 2 [6].

Figure 2. A negatively cross-coupled filter network.

In the figure above, the impedances (i.e. Laplace impedances) of the elements are expressed as:

1 50Z = ;

2
2 2

2 2 1

s L
Z

L C s
=

+
;

                        31 31Z sL= , 32 32Z sL= , 33 331Z sC= , 34
34

2
34 34 1

sL
Z

L C s
=

+
;  (6)

          41
41

2
41 41 1

sL
Z

L C s
=

+
, 42

42
2

42 42 1

sL
Z

L C s
=

+
, 43 43Z sL=    ;

5 50Z = .

The chain matrices of the subsystem in the network are given by   

                                      1

1 50

0 1
T

é ù
= ê ú
ë û

                     (7)
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, 2,3,&4.
i i

i

i i

A B
T i

C D

é ù
= =ê ú
ë û

                   (8)

                                       5
1 0

1 / 50 1
T

é ù
= ê ú
ë û

      (9)

These matrices are due to the series source impedance R, shunt resonator #1, bridged-T subsystem, p

-network, and the load impedance, respectively.  In Equation (7), matrix entry (1, 1)T is dependent on each 

of the cascaded five networks. In Equation (8), all of the 12 entries of three matrices should be expressed in 

terms of Laplace impedances given in Equation (6).   From Equation (3), the voltage transfer function  

H(s) has the numerator polynomial N(s) and denominator polynomial and D(s), respectively. Using a 

MATLAB program, the chain matrices in Equation (4) are obtained based on the following detailed 

procedures.

6. Rational polynomial expressions of matrix entries

In Equation (6), to ensure that the conditions of the realizations of Hurwitz polynomial and /or polynomial 

of even degree  for the complex conjugate roots is imposed in the numerator and denominator of a rational 

polynomial function, the rational expressions of any matrix entries are defined in this dissertation.

The i-th chain matrix iT   of the i-th subsystem of a filter network is a 2 2´   matrix with four entry iA ,

iB , iC , and iD , since these are defined from the two-port systems. Any matrix obtained by 

mathematically manipulating any numbers of 2 2´ matrices is also 2 2´ matrix.  Let the entry Xi of 

the chain matrix iT represent any of the matrix entry Ai , Bi , Ci , or .Di Four of these entries are 

meant by

(1,1) , (1, 2) ,

(2,1) , (2, 2) .

i i

i i

Ai Entry of the T Bi Entry of the T

Ci Entry of the T Di Entry of the T

º º

º º

Each of the entry Xi of matrix iT   has a numerator polynomial ( )if s and a denominator polynomial 

( )ig s .  Therefore, entry Xi   can be expressed  in terms of two quantities as  

                    
( )

( )
i

i

f s
Xi

g s
= .                                 (10)                 

The numerator function ( )if s   has  its own  numerator ( ( ))in f s    and denominator    ( ( ))id f s .  
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The denominator function ( )ig s   has its own numerator ( ( ))in g s   and denominator ( ( ))id g s . 

Therefore,  Xi can be expressed in terms of the four quantities as

                                     

( ( ))

( ) ( ( ))

( ( ))( )

( ( ))

i

i i

ii

i

n f s

f s d f s
Xi

n g sg s

d g s

= = .                       (11)

To get a rational polynomial function for the entry ,Xi the following expression is used.

                          

( ( ))

( ) ( ( )) ( ( )) ( ( ))

( ( ))( ) ( ( )) ( ( ))

( ( ))

i

i i i i

ii i i

i

n f s

f s d f s n f s d g s
Xi

n g sg s n g s d f s

d g s

×
= = =

×
.                   (12)

The resultant numerator is a polynomial, and the resultant denominator is also a polynomial.   Two  

notations  NXi   and DXi are introduced as 

                                          ( ( )) ( ( ))i iNXi n f s d g s×º

and

                                            ( ( )) ( ( ))i iDXi n g s d f sº × .

Matrix entry  Xi is given by a rational polynomial function as

               

NXi
Xi

DXi
º .                                      

(13)

The Equation (13) is used to  represent a  rational polynomial.  The numerator and denominator may or 

may not have common terms.  

7. General Form of Transfer Function 
By the chain (ABCD) matrices of subsystems, the transfer function is obtained. The transfer function of 

the whole system is written as [7, 8]

)(

)(
)(

sD

sN
sH = .                                  (14)

In Equation (14), )(sN is the numerator of polynomial of ),(sH and )(sD is the denominator 
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polynomial  of  ( )H s [9, 10].  Each has the following expressions, respectively.

        )(sN =   50×DC2 × (DA3 ×DB3 ×DC3×DD3) × (DA4 ×DC4×DD4)                 (15)                                    

           )(sD =   ( 50 NA4 DB3 DD3 DC4 DD4 DC3 DC2 

                              + 2500 NA4 DB3 DD3 DC4 DD4 DC3 NC2

                              + NB4 DA4 DB3 DD3 DC4 DD4 DC3 DC2

                              + 50 NB4 DA4 DB3 DD3 DC4 DD4 DC3 NC2 ) × NA3

                              + 2500 NC4 DA3 DC3 DA4 DD4 NB3 DD3 NC2

                              + 2500 NC4 DA3 DC3 DA4 DD4 ND3 DC2 DB3   

(16)

                              + 2500 NA4 DB3 DD3 DC4 DD4 NC3 DC2 DA3

                              + 50 NC4 DA3 DC3 DA4 DD4 NB3 DD3 DC2

                              + 50 NB4 DA4 DB3 DD3 DC4 DD4 NC3 DC2 DA3

                              + ND4 DA3 DC3 DA4 DC4 NB3 DD3 DC2

                              + 50 ND4 DA3 DC3 DA4 DC4 NB3 DD3 NC2

                              + 50 ND4 DA3 DC3 DA4 DC4 ND3 DC2 DB3                           

            

                                                                                                                

As defined before, the notations, for example, are used to mean the following;

DB3 means denominator polynomial of entry B, or (1, 2), of subsystem S3.

ND4 means numerator polynomial of entry D, or (2, 2), of subsystem S4.

Equations (15) and (16) represent the numerator and denominator polynomials of the transfer function of the 

whole filter system, respectively. To find out actual polynomials of complex variable s , the values of 'L s

and  'C s   of the each subsystem should be used. Depending on  the   existence  of   common  

terms  in the numerator  polynomial  and the denominator  polynomial,  the relevant  terms will be 

cancelled, so that )(sN and )(sD should be prime polynomials to determine the locations of transmission 

zeros. The two equations hold for any network composed of five cascaded subsystems.

8. Conclusion 
In this paper, an investigation of a practical method to determine quantitatively the numerator and 

denominator polynomials of transfer function of cross-coupled microwave filter network. 

To take advantage of chain matrices applied to cascaded subsystem, the cross-coupled subsystem was 

considered by calculating the four entries of 2 by two matrices. The subsystem was characterized by its own 

chain matrix. The cascaded chain matrices represent the whole filter network. The matrix entry (1, 1) was 

used to find the transfer function. 
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