• Title/Summary/Keyword: Cross passage

Search Result 131, Processing Time 0.03 seconds

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

A Study on the 3-D Airflow and Dynamic Cross Contamination in the Photolithography Process Cleanroom (광식각공정이 있는 클린룸에서의 3차원 기류 및 동적교차오염에 관한 연구)

  • Noh, Kwang-Chul;Oh, Myung-Do;Lee, Seung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.560-568
    • /
    • 2004
  • We performed the numerical study on the characteristics of the 3-D airflow and dynamic cross contamination in the photolithography process cleanroom. The nonunifurmity, the deflection angle and the global cross contamination were used for analyzing the characteristics and performances of cleanroom. From the numerical results, we knew that the airflow characteristics of the cleanrooms are largely affected by the porosity of panel and the adjustment of dampers and the global cross contamination varies with the location of source and the passage of time through the concentration ratio.

A Numerical Study on the Characteristics of Airflow and Cross Contamination in the Photolithography Process Cleanroom (광식각공정 클린룸에서의 기류 및 교차오염에 대한 수치적 연구)

  • Noh, Kwang-Chul;Lee, Seung-Chul;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.151-156
    • /
    • 2003
  • We performed the numerical study on the characteristics of the airflow and cross contamination in the photolithography process cleanroom. The nonuniformity, the deflection angle and the global cross contamination were used for analyzing the characteristics and performances of cleanroom. We knew that the airflow characteristics of the cleanrooms are largely affected by the porosity of panel and the adjustment of dampers. And the numerical result showed that the global cross contamination varies with the location of source and the passage of time.

  • PDF

Effect of Blade Angle on the Performance of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.413-420
    • /
    • 2008
  • In order to improve the performance of cross-flow hydro turbine, detailed examination of the effect of the turbine configuration on the performance is needed necessarily. Therefore, this study is aimed to investigate the effect of blade angle on the performance of the cross-flow hydro turbine. Analysis of the turbine performance with the variation of the blade angle has been made by using a commercial CFD code. The results show that inlet and outlet angles of runner blade give considerable effect on the performance of the turbine. Pressure on the surface of the runner blade changes remarkably by the blade angle both at the Stages 1 and 2. Moreover, relatively small blade inlet angle is effective to produce higher value of output power. Recirculating flow in the runner passage causes remarkable hydraulic loss.

Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.317-326
    • /
    • 2013
  • Probabilistic design methods can consider uncertainties of design variables and are widely used in the design of vertical breakwaters. The probabilistic design methods include a partial safety factor method, reliabilitybased design method, and performance-based design method. Especially the performance-based design method calculates the accumulated sliding distance during the lifetime of the breakwater or during a design storm. Recently a time-dependent performance-based design method has been developed based on the first-passage probability of individual sliding distance during a design storm. However, because the allowable criteria in the first-passage probability method are not established, the stability of structures cannot be quantitatively evaluated. In this study, the allowable first-passage probabilities for two limit states are proposed by calculating the first-passage probabilities for the cross-sections designed with various water depths and characteristics of extreme wave height distributions. The allowable first-passage probabilities are proposed as 5% and 1%, respectively, for the repairable limit state (allowable individual sliding distance of 0.03 m) and ultimate limit state (allowable individual sliding distance of 0.1 m). The proposed criteria are applied to the evaluation of the effect of wave-height increase due to climate change on the stability of the breakwater.

DESIGN OPTIMIZATION AND PERFORMANCE ANALYSIS OF INTERNAL COOLING PASSAGE WITH VARIOUS TYPE OF RIB TURBULATOR FOR HIGH PRESSURE TURBINE NOZZLE (전산유체해석을 이용한 다양한 요철 형상에 대한 고압터빈 노즐 냉각유로 최적화 및 냉각 성능 비교)

  • Lee, S.A.;Rhee, D.H.;Kang, Y.S.;Yee, K.J.;Kim, K.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.14-19
    • /
    • 2014
  • This study conducts shape optimization of rib turbulator on the internal cooling passage that has triangular cross-section of high pressure turbine nozzle. During optimization, various types of rib turbulator including angled, V-shaped, A-shaped and angled rib with intersecting rib are considered. Each type of rib turbulator is parameterized with attack angle(s), rib height, spacing ratio and bending/intersecting location. For optimization, Design of Experiment (DOE) and Kriging surrogate model are used to utilize computational resource more efficiently and Genetic Algorithm (GA) is used to search the optimum points. As a result, Pareto front of each type of rib turbulator with friction factor that relates to pressure drop in cooling passage and spatially averaged Nusselt number that relates to heat transfer on the wall is drawn and optimum points on the Pareto front are suggested.

Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire (터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • In this study, the l/35 reduced-scale model experiment were conducted to investigate designed ventilation system performance at rescue station in tunnel fire. A model tunnel with 2 mm thick of steel, 10 m long, 0.19 m high and 0.26m was made by using Froude number scaling law. The cross-passages installing escape door at the center. were connected between accident tunnel and rescue tunnel. The n-heptane pool fire, $4cm\times4cm$, with heat release rate 698.97W were used as fire source. The fire source was located in the center and portal of accident tunnel as Worst case.. An operating ventilation system extracted smoke amount of 0.015 cms. The smoke temperature and carbon monoxide. concentration in cross-passage were measured to verify designed ventilation system. The results showed that, in center fire case without ventilation in accident tunnel, smoke did not propagated to rescue station. In portal tire case, smoke spreaded to rescue station without ventilation. But smoke did not propagated to rescue station with designed ventilation.

Experimental Study on Effect of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (끝벽의 형상이 터빈 노즐안내깃 캐스케이드내 3차원 유동에 미치는 영향에 관한 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.514-519
    • /
    • 2003
  • The objective of this study is to document the secondary flow and the total pressure loss distribution in the contoured endwall installed linear turbine nozzle guide vane cascade passage and to propose an appropriate contraction ratio of the contoured endwall which shows the best loss reduction among the simulated cases. In this study, three different contraction ratio of contoured endwalls have been tested. This study was performed by experimental method and when the contoured endwall has the contraction ratio of 0.17 on exit height the results showed the best loss reduction.

  • PDF

Performance Characteristics of a Cross-Flow Fan with Various Impeller Outlet Angles and Rearguiders (임펠러 출구각 및 리어가이더 형상 변화에 따른 횡류홴의 성능 특성)

  • Kim, H.S.;Kim, D.W.;Yoon, T.S.;Park, S.K.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.851-856
    • /
    • 2003
  • A cross-flow fan consists of an impeller, a stabilizer and a rearguider. When it applied for an air conditioner, an evaporator should be added. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there are a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, the reciprocal relation between the impeller and the flow passage is the important factor for performance improvement of the cross-flow tan because each parameter is independent. The performance characteristics in the cross-flow fan are graphically depicted with various impeller outlet angles and rearguiders.

  • PDF

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.