• Title/Summary/Keyword: Cross current

Search Result 1,723, Processing Time 0.041 seconds

Fusing Time Characteristics Analysis of Cable according to Temperature and Insulator (온도 및 절연체에 따른 케이블의 단선시간 특성 해석)

  • Kim, Ju-Hee;Kang, Sin-Dong;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.15-20
    • /
    • 2018
  • This paper describes the fusing time characteristics of Light PVC Sheathed Circular Cord(VCTF) and Tray Frame Retardant(TFR) cables according to increased temperature under over current condition. The experimental equation will be used to determine the validity and reliability of the test results. The over current flowed 3, 5 and 10 times higher than the amount of allowable current using DC power supply with DAQ(Data Acquisition) measurement system. An infrared radiation heater, which was controlled by a variable AC auto transformer, was used to increase the temperature from room temperature to 50, 100 and 150 degrees Celsius. First, two type of cables were analyzed those with different cross-sectional areas with in the same structure and those with different structures with in the same cross-sectional areas. Then, it was determined how fusing time had been influenced according to the cross-sectional areas and different structures, respectively. The cable resistance was increased by joule heating according to increasing temperature. Therefore, the allowable current of cable is decreased. Finally, the fusing time of the cable was decreased due to increased temperatures at current flow, which were 3 times the amount of allowable current. The instantaneous breakdown was observed when current flow was 5 and 10 times over the amount of allowable current. The fusing time is directly affected by the structure of cable insulation.

A Design Method of Iron-cored CTs To Prevent Satruation (포화를 방지하기 위한 보호용 철심 변류기 설계 방법)

  • Lee, Ju-Hun;Gang, Sang-Hui;Gang, Yong-Cheol;Lee, Seung-Jae;Bae, Ju-Cheon;An, Jun-Gi;Lee, Cheong-Hak;Lee, Jeong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • Current transformer (CT) saturation may cause a variety of protective relays to malfunction. The conventional CT is designed that it can carry up to 20 times the rated current without exceeding 10% ratio error. However, the possibility of CT saturation still remains if the fault current contains substantial amounts of ac and/or dc components. This paper presents a design method of iron-cored CTs for use with protective relays to prevent CT saturation. The proposed design method determines the core cross section of the CT; it employs the transient dimensioning factor to consider relay's operating time (duty cycle) and dc component as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider the biggest fault current. The method designs the cross section of CTs in cases of reclosure and no reclosure.

  • PDF

Current Decoupling Control for the Three-level PWM Rectifier with a Low Switching Frequency

  • Yuan, Qing-Qing;Xia, Kun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.280-287
    • /
    • 2015
  • Three-level PWM rectifiers applied in medium voltage applications usually operate at low switching frequency to keep the dynamic losses under permitted level. However, low switching frequency brings a heavy cross-coupling between the current components $i_d$ and $i_q$ with a poor dynamic system performance and a harmonic distortion in the grid-connecting current. To overcome these problems, a mathematical model based on complex variables of the three-level voltage source PWM rectifier is firstly established, and the reasons of above issues resulted from low switching frequency have been analyzed using modern control theory. Then, a novel control strategy suitable for the current decoupling control based on the complex variables for $i_d$ and $i_q$ is designed here. The comparisons between this kind of control strategy and the normal PI method have been carried out. MATLAB and experimental results are given in detail.

Optimum Design of Multi-Stacking Current Lead Using HTS Tapes (고온초전도 테이프를 이용한 적층형 전류 도입선의 최적설계)

  • 설승윤;김민수;나필선
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • The optimum cross-sectional area profile of gas-cooled high-temperature superconductor(HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant satiety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-stacking HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-stacking current leads are discussed.

  • PDF

An Overview: Current Control Technique for Propulsion Motor for EV (전기자동차 구동용 모터를 위한 전류 제어 기술)

  • Lee, Hee-Kwang;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • Electric vehicles (EV) and hybrid EVs (HEV) are designed and manufactured by GM, Toyota, Honda, and Hyundai motors. The propulsion system design process for EV requires integrating subsystem designs into an overall system model to maximize the performance of a given propulsion architecture. Therefore, high-power density and high-torque density are important attributes required for EV applications. To improve torque and power density, propulsion motors are designed for saturation during high-torque operation. The nonlinearity associated with core saturation is modeled by incorporating the cross-coupling inductances, which also behave nonlinearly. Furthermore, in EV environments, the battery is directly connected to the DC link, and the battery changes depending on the state of charge. It will be onerous if as many optimal current commands as different $V_{dc}$ were made. This paper presents the optimal current commands in the various operating condition and the current control technique in EV environments.

Novel Islanding Detection Method for Distributed Generation Interconnected with Utility Grid (계통연계 분산전원의 새로운 단독운전 판별기법)

  • Bae, Byung-Yeol;Lee, Doo-Young;Ko, Jong-Sun;Choi, Nam-Sub;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • This paper describes the development of a novel islanding detection method, which uses the signal cross-corelation scheme between the injected reactive current and the power frequency deviation. The existing method, which injects the reactive current of 2.5-5% to the rated current and detects the frequency deviation directly, brings about lowing the power quality due to the harmonic pollution. The proposed method eliminates the weak point of the existing method, because it injects the reactive current less than 1% to the rated current. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with a 10kVA hardware prototype. The proposed method can detect the islanding status effectively without lowing the power quality of interconnected distributed generation system.

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.

Non-linear Resistive Switching Characteristic of ZnSe Selector Based HfO2 ReRAM Device for Eliminating Sneak Current

  • Kim, Jong-Gi;Kim, Yeong-Jae;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.357-358
    • /
    • 2013
  • The non-linear characteristics of ON states are important for the application to the high density cross-point memory industry because the sneak current in neighbor cells occurred during reading, erasing, and writing process. Kw of above 20 in ON states, which is the writing current @ Vwrite/the current @ 1/2Vwrite, was required in cross-point ReRAM memory industry. The high current density non-linear IV curve of ZnSe selector was shown and the ALD HfO2 switching device has the linear properties of ON states and the compliance current of 100 uA. To evaluate the performance of the selection device, we connected itto HfO2 switching device in series. The bottom electrode of the selection device was connected to the top electrode of the RRAM. All of the bias was applied with respect to the top electrode of the selection device, whereas the bottom electrode of the RRAM was grounded. In the cross-point application, 1/2Vwrite and -1/2Vwrite were applied to the word-line and bit-line, respectively, which were connected to the selected cell, and a zero bias was applied to the unselected word-lines and bit-lines. The current @ 1/2Vwrite of the unselected cells was blocked by the selection device, thus eliminating the sneak path and obtaining a writing voltage margin. Using this method, the writing voltage margin was analyzed on the basis of the memory size.

  • PDF

Application of SeaWiFS Chlorophyll-a Ocean Color Image for estimating Sea Surface Currents from Geostationary Ocean Color Imagery (GOCI) data (정지궤도 해색탑재체(GOCI) 표층유속 추정을 위한 SeaWiFS 해색자료의 응용)

  • Kim, Eung;Ro, Young-Jae;Jeon, Dong-Chull
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.209-220
    • /
    • 2010
  • One of the most difficult tasks in measuring oceanic conditions is to produce oceanic current information. In efforts to overcome the difficulties, various attempts have been carried out to estimate the speed and direction of ocean currents by utilizing sequential satellite images. In this study, we have estimated sea surface current vectors to the south of the Korean Peninsula, based on the maximum cross-correlation method by using sequential ocean color images of SeaWiFS chlorophyll-a. Comparison of surface current vectors estimated by this method with the geostrophic current vectors estimated from satellite altimeter data and in-situ ADCP measurements are good in that current speeds are underestimated by about 15% and current directions are show differences of about $36^{\circ}$ compared with previous results. The technique of estimating current vectors based on maximum cross-correlation applied on sequential images of SeaWiFS is promising for the future application of GOCI data for the ocean studies.

Experimental Study on Flow Characteristics in Meandering Channel (사행수로에서 흐름 특성에 관한 실험적 연구)

  • Seo, Il-Won;Sung, Ki-Hoon;Baek, Kyong-Oh;Jeong, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.527-540
    • /
    • 2004
  • In order to investigate characteristics of the primary flow and the secondary currents in the meandering channel, laboratory experiments were conducted in the meandering channel made up of alterative bends haying 120。 arc angle. Experiments were performed in two types of cross-sections, a rectangular cross-section and a curved cross-section which was made to adopt a beta probability function. Three-dimensional velocity fields were measured using a micro-ADV. As the result of experiments, in case of the rectangular cross-section, the primary flow occurred taking the shortest course, which is similar to the result of previous researches. In case of the curved cross-section, the primary flow was expected to occur along the thalweg. but it occurred almost along the shortest way. This is considered due to effects of bottom roughness and sinuosity Not only a main cell but also a secondary cell of secondary currents were clearly shown by mean of the stream function. The secondary current intensity has the maximum value near the apex of the second bend for cases of both rectangular and curved cross-sections. However, the value of the secondary current intensity for the curved section is slightly larger than that for the rectangular cross-section. Also, in case of the rectangular cross-section, the higher the ratio of width to depth is, the larger the secondary current intensity is.