Browse > Article
http://dx.doi.org/10.7780/kjrs.2010.26.2.209

Application of SeaWiFS Chlorophyll-a Ocean Color Image for estimating Sea Surface Currents from Geostationary Ocean Color Imagery (GOCI) data  

Kim, Eung (Climate Change & Coastal Disaster Research Department, KORDI)
Ro, Young-Jae (Dept. of Oceanography, Chungnam National University)
Jeon, Dong-Chull (Climate Change & Coastal Disaster Research Department, KORDI)
Publication Information
Korean Journal of Remote Sensing / v.26, no.2, 2010 , pp. 209-220 More about this Journal
Abstract
One of the most difficult tasks in measuring oceanic conditions is to produce oceanic current information. In efforts to overcome the difficulties, various attempts have been carried out to estimate the speed and direction of ocean currents by utilizing sequential satellite images. In this study, we have estimated sea surface current vectors to the south of the Korean Peninsula, based on the maximum cross-correlation method by using sequential ocean color images of SeaWiFS chlorophyll-a. Comparison of surface current vectors estimated by this method with the geostrophic current vectors estimated from satellite altimeter data and in-situ ADCP measurements are good in that current speeds are underestimated by about 15% and current directions are show differences of about $36^{\circ}$ compared with previous results. The technique of estimating current vectors based on maximum cross-correlation applied on sequential images of SeaWiFS is promising for the future application of GOCI data for the ocean studies.
Keywords
Maximum Cross-Correlation Method; Current Vector; SeaWiFS; Ocean Color; Chlorophyll-a; GOCI data;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Svejkovsky J., 1988. Sea surface flow estimation from advanced very high resolution radiometer and coastal zone color scanner satellite imagery : a verification study, J. Geophy. Res., 93(C6): 6735-6743.   DOI
2 Yentsch C. S., 1982. Satellite observation of phytoplankton distribution associated with large scale oceanic circulation, NAFO Sci.Coun. Studies, 4: 53-59.
3 Yoo S. J. and J. S. Park, 2009. Why is the southwest the most productive region of the East Sea/Sea of Japan?, Journal of marine systems, 78(2): 301-315.   DOI   ScienceOn
4 Wilkin J. L., M. M. Bowen, and W. J. Emery, 2002. Mapping mesoscale currents by optimal interpolation of satellite radiometer and altimeter data, Ocean Dynamics, 52: 95-103.   DOI   ScienceOn
5 Olson D. B., 1986. Transition zones and faunal boundaries in relationship to physical properties of the ocean. In: Pierrot-Bulls, A. C., van der Spoel. S., Zahuranec B. J. and Johnson R. K. (eds), Pelagic Biogeography, UNESCO Technical Papers in Marine Sciences 49, UNESCO. Paris, pp. 219-229.
6 Ro Y. J., A. Alexanin and A. Kazansky, 1997. Synoptic approach to estimation of sea surface current fields from sequential satellite image : Improved technique and validation study, J. of the Korean Soc. of Remote Sensing, 13(3): 203-222.
7 Garcia-Gorriz E. and A. K. Stips, 2008. Multi-annual model runs for the Mediterranean Sea: the Aegean Sea. JRC EUR Report 23218 EN.
8 Sackmann B. and M. J. Perry, 2006. Ocean color observations of a surface water transport event: Implications for Pseudo-nitzschia on the Washington coast, Harmful Algae, 5: 608-619.   DOI   ScienceOn
9 Sohn B. J. and S. H. Hwang, 1998. Identifying yellow sand from the ocean color sensor SeaWiFS measurements, J. of the Korean Society of Remote Sensing, 14(4): 366-375.
10 SSALTO/DUACS, 2006. SSALTO/DUACS User Handbook. CLS-DOS-NT-06.034, CLS Ramonville St Agne, 54p.
11 Iino N., K., Kinoshita, A. C. Tupper, and T. Yano, 2006. Detection of Asian dust aerosols using meteorological satellite data and suspended particulate matter concentrations. Atmospheric environment, 38(40): 6999-7008.   DOI
12 Kelly K. A., 1989. An inverse model for near-surface velocity from infrared images, J. Phys.Oceanogr., 19(12): 1845-1864.   DOI
13 Kelly K. A. and P. T. Strub, 1992. Comparison of velocity estimates from advanced very high resolution radiometer in the coastal transition zone, J. Geophys. Res., 97(C6): 9653-9668.   DOI
14 한국과학기술연구원, 1993. 인공위성에 의한 황사이동 추적 및 청정대기 감시 체제 구축에 관한 연구 (I). 과학기술처, p98.
15 La Violette P. E., 1984. The advection of submesoscale thermal features in the Alboran Sea Gyre, J. Phys. Oceanogr., 14: 550-565.   DOI
16 Lee T. S., J. Y. Chung and H. W. Kang, 1995. Determination of weighting factor in the inverse model for estimating surface velocity from AVHRR/SST data, J. of the Korean Society of Oceanogr., 30(6): 543-549.
17 Moreno-Ostos E., L. Cruz-Pizarro, A. Basanta-Alv?s, C. Escot and D. G. George, 2006. Algae in the motion: Spatial distribution of phytoplankton in thermally stratified reservoirs, Limnetica, 25(1-2): 205-216.
18 Barton I. J., 2002. Ocean currents from successive satellite images: The reciprocal filtering technique, J. Atmospheric and Oceanic Technology, 19: 1677-1689.   DOI   ScienceOn
19 Dzwonkowski N. and X. H. Yan, 2005. Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data, Continental Shelf Research, 25: 1942-1958.   DOI   ScienceOn
20 Emery W. J., A. C. Thomas, M. J. Collins, W. R. Crawford and D. L. Mackas, 1986. An Objective method for computing advective surface velocities from sequential infrared satellite images, J. Geophys. Res., 91(C11): 12865-12878.   DOI
21 Garcia C. A. E. and I. S. Robison, 1989. Sea surface velocities in shallow seas extracted from sequential coastal zone color scanner satellite data, J. Geophys. Res., 94(C9): 12681-12691.   DOI
22 기상연구소, 2005. 기상지진기술개발사업-황사감시 및 예측기술개발(I), 기상청, p229.
23 박지수, 석문식, 윤석, 유신재. 2008. 북서태평양의 표 층엽록소 변동성, Ocean and Polar Research, 30(3): 277-287.   과학기술학회마을   DOI
24 김상우, 임진욱, 장이현. 2008. 해색영상을 이용한 동중 국해 북부해역 하계 클로로필 a의 시공간 분포, 한국환경과학회지, 17(1): 85-95.   과학기술학회마을
25 김영섭, 박경원, 서애숙, 2002. KOMPSAT OSMI 자료 를 이용한 황사탐지, 대한원격탐사학회지, 18(4): 201-207.   과학기술학회마을   DOI
26 김 응, 노영재. 2000. 연속 위성 화상 자료상의 향상된 형태추적법을 이용한 유속추정기법, 대한원격탐사학회지, 16(3): 199-209.
27 심재형, 2003. 플랑크톤 생태학. 서울대학교 출판부, pp. 1-150.