DOI QR코드

DOI QR Code

Application of SeaWiFS Chlorophyll-a Ocean Color Image for estimating Sea Surface Currents from Geostationary Ocean Color Imagery (GOCI) data

정지궤도 해색탑재체(GOCI) 표층유속 추정을 위한 SeaWiFS 해색자료의 응용

  • Kim, Eung (Climate Change & Coastal Disaster Research Department, KORDI) ;
  • Ro, Young-Jae (Dept. of Oceanography, Chungnam National University) ;
  • Jeon, Dong-Chull (Climate Change & Coastal Disaster Research Department, KORDI)
  • 김응 (한국해양연구원 기후연안재해연구부) ;
  • 노영재 (충남대학교 해양학과) ;
  • 전동철 (한국해양연구원 기후연안재해연구부)
  • Received : 2010.03.22
  • Accepted : 2010.04.15
  • Published : 2010.04.30

Abstract

One of the most difficult tasks in measuring oceanic conditions is to produce oceanic current information. In efforts to overcome the difficulties, various attempts have been carried out to estimate the speed and direction of ocean currents by utilizing sequential satellite images. In this study, we have estimated sea surface current vectors to the south of the Korean Peninsula, based on the maximum cross-correlation method by using sequential ocean color images of SeaWiFS chlorophyll-a. Comparison of surface current vectors estimated by this method with the geostrophic current vectors estimated from satellite altimeter data and in-situ ADCP measurements are good in that current speeds are underestimated by about 15% and current directions are show differences of about $36^{\circ}$ compared with previous results. The technique of estimating current vectors based on maximum cross-correlation applied on sequential images of SeaWiFS is promising for the future application of GOCI data for the ocean studies.

해양현상을 이해하기 위한 관측분야의 노력 중에서 해류 정보의 생산은 가장 어려운 작업 중의 하나이다. 이를 극복하기 위한 대안으로서 연속 화상 자료로부터 해류벡터를 추정하려는 많은 연구들이 진행 되고 있다. 본 연구에서는 한반도 주변의 SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll-a 해색 자료와 AVHRR/SST 를 이용하여 연속 화상 사이의 유사한 형태를 추적하는 최대상 관계수법을 사용한 표층 유속 벡터의 추정을 시도하였다. 한국의 남해역에서 적용한 유속 벡터 결과는 해면 고도계를 이용한 지형류, ADCP 관측 결과와 비교하여 유속은 약 15% 정도 작고, 유향은 약 $36^{\circ}$의 차이로 근접하여 기존 연구 결과에 비해 양호하게 나타났다. 이는 향후 GOCI 자료의 응용적 측면에서 매우 고무적이다.

Keywords

References

  1. 기상연구소, 2005. 기상지진기술개발사업-황사감시 및 예측기술개발(I), 기상청, p229.
  2. 김상우, 임진욱, 장이현. 2008. 해색영상을 이용한 동중 국해 북부해역 하계 클로로필 a의 시공간 분포, 한국환경과학회지, 17(1): 85-95.
  3. 김영섭, 박경원, 서애숙, 2002. KOMPSAT OSMI 자료 를 이용한 황사탐지, 대한원격탐사학회지, 18(4): 201-207. https://doi.org/10.7780/kjrs.2002.18.4.201
  4. 김 응, 노영재. 2000. 연속 위성 화상 자료상의 향상된 형태추적법을 이용한 유속추정기법, 대한원격탐사학회지, 16(3): 199-209.
  5. 박지수, 석문식, 윤석, 유신재. 2008. 북서태평양의 표 층엽록소 변동성, Ocean and Polar Research, 30(3): 277-287. https://doi.org/10.4217/OPR.2008.30.3.277
  6. 심재형, 2003. 플랑크톤 생태학. 서울대학교 출판부, pp. 1-150.
  7. 한국과학기술연구원, 1993. 인공위성에 의한 황사이동 추적 및 청정대기 감시 체제 구축에 관한 연구 (I). 과학기술처, p98.
  8. Barton I. J., 2002. Ocean currents from successive satellite images: The reciprocal filtering technique, J. Atmospheric and Oceanic Technology, 19: 1677-1689. https://doi.org/10.1175/1520-0426(2002)019<1677:OCFSSI>2.0.CO;2
  9. Dzwonkowski N. and X. H. Yan, 2005. Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data, Continental Shelf Research, 25: 1942-1958. https://doi.org/10.1016/j.csr.2005.06.011
  10. Emery W. J., A. C. Thomas, M. J. Collins, W. R. Crawford and D. L. Mackas, 1986. An Objective method for computing advective surface velocities from sequential infrared satellite images, J. Geophys. Res., 91(C11): 12865-12878. https://doi.org/10.1029/JC091iC11p12865
  11. Garcia C. A. E. and I. S. Robison, 1989. Sea surface velocities in shallow seas extracted from sequential coastal zone color scanner satellite data, J. Geophys. Res., 94(C9): 12681-12691. https://doi.org/10.1029/JC094iC09p12681
  12. Garcia-Gorriz E. and A. K. Stips, 2008. Multi-annual model runs for the Mediterranean Sea: the Aegean Sea. JRC EUR Report 23218 EN.
  13. Iino N., K., Kinoshita, A. C. Tupper, and T. Yano, 2006. Detection of Asian dust aerosols using meteorological satellite data and suspended particulate matter concentrations. Atmospheric environment, 38(40): 6999-7008. https://doi.org/10.1016/j.atmosenv.2004.02.070
  14. Kelly K. A., 1989. An inverse model for near-surface velocity from infrared images, J. Phys.Oceanogr., 19(12): 1845-1864. https://doi.org/10.1175/1520-0485(1989)019<1845:AIMFNS>2.0.CO;2
  15. Kelly K. A. and P. T. Strub, 1992. Comparison of velocity estimates from advanced very high resolution radiometer in the coastal transition zone, J. Geophys. Res., 97(C6): 9653-9668. https://doi.org/10.1029/92JC00734
  16. La Violette P. E., 1984. The advection of submesoscale thermal features in the Alboran Sea Gyre, J. Phys. Oceanogr., 14: 550-565. https://doi.org/10.1175/1520-0485(1984)014<0550:TAOSTF>2.0.CO;2
  17. Lee T. S., J. Y. Chung and H. W. Kang, 1995. Determination of weighting factor in the inverse model for estimating surface velocity from AVHRR/SST data, J. of the Korean Society of Oceanogr., 30(6): 543-549.
  18. Moreno-Ostos E., L. Cruz-Pizarro, A. Basanta-Alv?s, C. Escot and D. G. George, 2006. Algae in the motion: Spatial distribution of phytoplankton in thermally stratified reservoirs, Limnetica, 25(1-2): 205-216.
  19. Olson D. B., 1986. Transition zones and faunal boundaries in relationship to physical properties of the ocean. In: Pierrot-Bulls, A. C., van der Spoel. S., Zahuranec B. J. and Johnson R. K. (eds), Pelagic Biogeography, UNESCO Technical Papers in Marine Sciences 49, UNESCO. Paris, pp. 219-229.
  20. Ro Y. J., A. Alexanin and A. Kazansky, 1997. Synoptic approach to estimation of sea surface current fields from sequential satellite image : Improved technique and validation study, J. of the Korean Soc. of Remote Sensing, 13(3): 203-222.
  21. Sackmann B. and M. J. Perry, 2006. Ocean color observations of a surface water transport event: Implications for Pseudo-nitzschia on the Washington coast, Harmful Algae, 5: 608-619. https://doi.org/10.1016/j.hal.2005.11.008
  22. Sohn B. J. and S. H. Hwang, 1998. Identifying yellow sand from the ocean color sensor SeaWiFS measurements, J. of the Korean Society of Remote Sensing, 14(4): 366-375.
  23. SSALTO/DUACS, 2006. SSALTO/DUACS User Handbook. CLS-DOS-NT-06.034, CLS Ramonville St Agne, 54p.
  24. Svejkovsky J., 1988. Sea surface flow estimation from advanced very high resolution radiometer and coastal zone color scanner satellite imagery : a verification study, J. Geophy. Res., 93(C6): 6735-6743. https://doi.org/10.1029/JC093iC06p06735
  25. Yentsch C. S., 1982. Satellite observation of phytoplankton distribution associated with large scale oceanic circulation, NAFO Sci.Coun. Studies, 4: 53-59.
  26. Yoo S. J. and J. S. Park, 2009. Why is the southwest the most productive region of the East Sea/Sea of Japan?, Journal of marine systems, 78(2): 301-315. https://doi.org/10.1016/j.jmarsys.2009.02.014
  27. Wilkin J. L., M. M. Bowen, and W. J. Emery, 2002. Mapping mesoscale currents by optimal interpolation of satellite radiometer and altimeter data, Ocean Dynamics, 52: 95-103. https://doi.org/10.1007/s10236-001-0011-2