• Title/Summary/Keyword: Cross Tensile Test

Search Result 197, Processing Time 0.028 seconds

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

A Study on Interfacial Reaction and Mechanical Properties of 43Sn-57Bi-X solder and Cu Substrate (Sn-Bi-X계 땜납과 Cu 기판과의 계면반응 및 기계적 특성에 관한 연구)

  • Seo, Yun-Jong;Lee, Gyeong-Gu;Lee, Do-Jae
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.807-812
    • /
    • 1998
  • Interfacial reaction and mechanical properties between Sn-Bi-X ternary alloys(X : 2Cu. 2Sb 5In) and Cu-substrate were studied. Cu/solder joints were subjected to aging treatments for up to 60days to see interfacial reaction at $100^{\circ}C$ and then were examined changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. Cu/solder joints were aged to 30days and then loaded to failure at cross head speed of 0.3mm $\textrm{min}^{-1}$ to measure strength and elongation. According to the result of EDS, it is supposed that the soldered interfacial zone was composed of $\textrm{Cu}_{3}\textrm{Sn}$ and $\textrm{Cu}_{6}\textrm{Sn}_{5}$. According to the tensile test of Cu/solder joint, joint strength was decreased by aging treatment. Fractographs of Cu/Sn-Bi solder detailed the effect of aging on fracture behavior. When intermetallic was thin, the fracture occurred through the solder. But as the interfacial intermetallic is thickened, the fracture propagated along the intermetallic/solder interface.

  • PDF

Study of numerical analysis and experiment for composite pressure hull on buckling pressure (외압을 받는 복합재 셸의 좌굴해석을 위한 실험 및 수치 해석 연구)

  • Jung H. Y.;Cho J. R.;Bae W. B.;Kwon J. H.;Choi J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.410-413
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for LRN 300. Composite tensile test was done to know the composite material properties applied FE analysis for URN composite. We predicted the buckling and post buckling analysis of composite laminated cylindrical panels under external compression by using ABAQUS /Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. The modified Riks method is an algorithm that allows effective solution of such cases [7]. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have two different lamination patterns, $[{\pm}45/0/90]_{18s\;and}\;[/0/90]_{18s}$. Cylindrical panel of experiment and analysis have the radius of 200mm, length of 210mm and 60 degree of cutting angle. The critical load from experiment is $69\%$ of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressue.

  • PDF

A Study on the Modification of Asphalt with Light (빛에 의한 아스팔트 개질에 관한 연구)

  • Kang, Hyun-Seung;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • Recently, much attention has focused on the permanent deformation of roads in hot summer and cracks in cold winter, which are detrimental to safe driving. This leads to necessity of modification of asphalt to resist those deformation. In this study, a type of modified asphalt was prepared by addition of a photoinitiator which is activated by ultraviolet lay. The mechanical and rheololgical properties of photoinitiator-modified asphalt were examined using UTM and rheometer. Results showed that the modified asphalt was effected by ultraviolet and thus tensile strength and storage modulus increased, due to molecular attraction, with initiator content and irradiation dose. Thermal analysis showed less weight loss upon photoinitiator-modification and this indicated that the molecular attraction is the result of cross linking reaction between asphalt molecules induced by photoinitiator. According to long term ultraviolet curing test, properties of the photoinitiator-modified asphalt did not decrease or even increase for 20 years. This indicates that useful life of the asphalt could be extended by addition of photoinitiator.

AN EXPERIMENTAL STUDY ON THE BONDING FORCE OF GLASS IONOMER CEMENT (Glass Ionomer Cement의 접착력(接着力)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.77-83
    • /
    • 1981
  • The purpose of this study was to observe the bonding strength between tooth surface (enamel and dentin) and restorative filling materials which are two composite resins (Clearfil and Concise) and Glass ionomer cement, after etching with 50% phoshoric acid and 37% citric acid. To measure the bonding strength in enamel, the labial surface of upper anterior tooth was cut flatly with using carborundum disk and polished with sand paper disk, and to measure in dentin, the dentin surface was prepared by grinding upper part of posterior tooth horizontally. After washing the tooth surface with water and drying with air blast, the prepared tooth surface was etched. In glass ionomer cement, 50% phosphoric acid and 37% citric acid were used, in Clearfil 40% phosphoric acid was used and in Concise, 50% phosphoric acid and 37% citric acid were used as etchant for 1 minute. After the copper band which is 5 mm in diameter and 5 mm in height was fixed on the prepared surface and each filling material was inserted into the copper band, the hooking loop was inserted into filled material in the copper band before setting to make it easily that the load is applied on the specimen. After all specimens were immersed in water at $37^{\circ}C$ for 1 week, this specimen was placed on the load cell of tensile test apparatus, and specimen was pulled at the cross-head speed of 0.8 mm per minute. The following results were obtained 1) In glass ionomer cement, the bond strength obtained by 37% citric acid was higher than one obtained by 50% phosphoric acid in enamel and dentin surfaces. The bond strength obtained in non-etched surface was much less than one by etchants in enamel and dentin surface. 2) In Clearfil, the bond strength obtained by 40% phosphoric acid was 4 times more than one obtained by non etch ant. 3) In Concise, the bond strength obtained by 50% phosphoric acid was almost same as one obtained by 37% citric acid, and the bond strength obtained by non etch ant was much less than one obtained by etchants.

  • PDF

Dispersion Stability and Mechanical Properties of ZrO2/High-temp Composite Resins by Nano- and Micro-particle Ratio for Stereolithography 3D Printing (나노 및 마이크로 입자 비율에 따른 광조형 3D 프린팅용 ZrO2/High-temp 복합 수지의 분산 안정성 및 기계적 특성)

  • Song, Se Yeon;Park, Min Soo;Yun, Ji Sun
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.221-227
    • /
    • 2019
  • This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated $ZrO_2$ ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated $ZrO_2$ particles are observed by FE-TEM and FT-IR. The rheological properties of VTES-coated $ZrO_2/High-temp$ composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3D-printed objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated $ZrO_2$ ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.

Flexural bearing capacity and stiffness research on CFRP sheet strengthened existing reinforced concrete poles with corroded connectors

  • Chen, Zongping;Song, Chunmei;Li, Shengxin;Zhou, Ji
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.29-42
    • /
    • 2022
  • In mountainous areas of China, concrete poles with connectors are widely employed in power transmission due to its convenience of manufacture and transportation. The bearing capacity of the poles must have degenerated over time, and most of the steel connectors have been corroded. Carbon fiber reinforced polymer (CFRP) offers a durable, light-weight alternative in strengthening those poles that have served for many years. In this paper, the bearing capacity and failure mechanism of CFRP sheet strengthened existing reinforced concrete poles with corrosion steel connectors were investigated. Four poles were selected to conduct flexural capacity test. Two poles were strengthened by single-layer longitudinal CFRP sheet, one pole was strengthened by double-layer longitudinal CFRP sheets and the last specimen was not strengthened. Results indicate that the failure is mainly bond failure between concrete and the external CFRP sheet, and the specimens fail in a brittle pattern. The cross-sectional strains of specimens approximately follow the plane section assumption in the early stage of loading, but the strain in the tensile zone no longer conforms to this assumption when the load approaches the failure load. Also, bearing capacity and stiffness of the strengthened specimens are much larger than those without CFRP sheet. The bearing capacity, initial stiffness and elastic-plastic stiffness of specimen strengthened by double-layer CFRP are larger than those strengthened by single-layer CFRP. Weighting the cost-effective effect, it is more economical and reasonable to strengthen with single-layer CFRP sheet. The results can provide a reference to the same type of poles for strengthening design.

Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum (핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계)

  • M. G. Kim;J. H. Lee;D. C. Ko
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.