• Title/Summary/Keyword: Crop

Search Result 23,820, Processing Time 0.049 seconds

Environmental Impacts of Food Waste Compost Application on Paddy Soil (음식물쓰레기 퇴비 시용이 논토양에 미치는 영향)

  • So, Kyu-Ho;Seong, Ki-Seog;Seo, Myung-Chul;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • To determine the influence of food waste compost (FWC) application on paddy soil, FWC was applied to the paddy soil and then compared with farmer's practice as to the effects on rice and soil environment. Initially, pig manure compost (PMC) had high content of phosphorus ($15g\;kg^{-1}$) and potassium ($23g\;kg^{-1}$), while FWC had high content of total nitrogen ($13g\;kg^{-1}$) and salinity ($18.5g\;kg^{-1}$). Comparison was also made between chemical fertilizer and FWC use as a trial in the paddy field under the clay loam and sandy loam soil. In the panicle formation stage, chemical fertilizer application was proper in clay loam while PMC application was proper in sandy loam. However, chemical fertilizer produced higher yield compared to compost treatment, both on clay loam and sandy loam with 20~25% and 17~19%, respectively. The lower yield in sandy loam maybe due to slow mineralization of compost such that the crop did not effectively use it. Organic matter content in paddy soil after experiment was higher in FWC and PMC plots compared to that in chemical fertilizer plots. But the other soil properties were comparable. Therefore, the FWC compost had little effect on soil when it use as a trial in paddy field. Likewise, after the application of FWC as a trial, analysis of nitrate nitrogen and ammonium nitrogen in the surface water and 60 cm depth of paddy soil water nine days after planting was done. Results revealed that concentration of ammonium nitrogen was similar to irrigation water while nitrate nitrogen concentration was not detected, and hence did not contribute to water pollution. It is concluded that the application of FWC in the paddy field had not affected on environmental pollution in the paddy field. But its use as compost during rice culture reduced yield quantity. Such study should include selection of compost material, amount and method of compost application.

Determination of Optimum Rate and Interval of Silicate Fertilizer Application for Rice Cultivation in Korea (벼에 대한 규산질비료의 시용량 및 시용주기 결정)

  • Song, Yo-Sung;Jun, Hee-Joong;Jung, Beung-Gan;Park, Woo-Kyun;Lee, Ki-Sang;Kwak, Han-Kang;Yoon, Jung-Hui;Lee, Choon-Soo;Yeon, Byeong-Yeol;Kim, Pil-Joo;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.354-363
    • /
    • 2007
  • In order to investigate the optimum rate and interval of silicate fertilizer application for rice cultivation, Chucheong byeo variety, one of commonly cultivated rice cultivar in Korea was planted on two different wetland rice soils located on Hwaseong-si from 2002 to 2005; Jisan series(a member of the fine loamy, mixed, mesic family of Fluvaquentic Endoaquepts), known as "Productive Paddy Soil", without any conspicuous limiting factor, and Seokcheon series (a member of the coarse loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquetps), known as "Sandy Paddy Soil", sandiness being major limiting factor. There were three rate treatments of silicate fertilizer application; the amount of silicate fertilizers needed to adjust the available soil silicate contents to 130, 200, and $270mg\;kg^{-1}$ was applied, in the first year only. There was an additional plot; applying the amount of silicate fertilizer needed to adjust soil available silicate to 130 ppm every year, which would serve as the base for the evaluation of residual effects of silicate fertilizers in the plots where different rates of silicate fertilizer were applied. From the yield data in first year, it was found that optimum available silica in the soil are $154mg\;kg^{-1$ and $160mg\;kg^{-1}$, in Jisan and Seogcheon soils, respectably. The duration of residual effects of silicate fertilizer was different depending upon the amount of applied silicate fertilizers and the soils. The higher the application rate, the residual effect lasted longer, and the residual effect was lasted longer in Jisan(clay loam) soil than in Seogcheon(sandy loam) soil. During four years, sum of the rate of contribution to increase available soil silica of applied silicate fertilizer in different soils ranged 18.6% and 24.1% in Jisan soil and Seogcheon soil, respectively. This may suggest that much portion of applied silicate would be either lost from the soil or remain in the soil as insoluble form. This deserves further study.

Comparative Environmental Effects of Digestates Application to the Rice Paddy Soil in Bioenergy Village : Field trial (저탄소녹색마을내 혐기소화액 순환이용에 대한 논토양 환경 영향 비교)

  • Hong, Seung-Gil;Shin, JoungDu;Kwon, Soon-Ik;Park, Woo-Kyun;Heo, Jeong-Wook;Bang, Hea-Son;Yoon, Youngman;Kang, Kee-Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.123-130
    • /
    • 2011
  • Objectives of this study were to compare the environmental effects of digestates produced in bioenergy village on the rice paddy field for recycling. Digestates were applied to the soils and the soil properties and the crop responses were analyzed according to the standard methods of soil evaluation. Plant height and the number of tiller showed similar results in both the conventional and digestate treated field, and the yield of rough rice was higher in the field treated with digestates than that with chemical fertilizer. The amounts of nitrogen absorbed in straw and grain were larger in the digestates-treated field than chemical fertilizer-treated one, and efficiency of nitrogen applied was shown to be the highest in 100% treated digestate of the pig manure. Exchangeable cation and pH increased in the soil treated with digestate after harvesting, but salt was not accumulated. With these results, it was concluded that resource recycling in green town can be facilitated through the securement of arable lands for the application of digestates and the proper use of these fertilizers. Long-term effects of digestate application on the soil environment should be sustainingly studied.

Response of Soil Properties to Land Application of Pig Manure Liquid Fertilizer in a Rice Paddy (돈분뇨 액비가 시용된 논토양 특성 변화)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Han, Min-Soo;Jung, Goo-Bok;Kang, Kee-Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2011
  • A wide diversity of liquid fertilizers and composts produced from the livestock manure in Korea is commonly applied to agricultural lands as an alternative of chemical fertilizers. However, their effects on the crop production and environmental impacts are still vague. The current study was investigated the property changes of paddy soils in sandy loam and silty loam treated with 1) control (no treatment), 2) chemicals, 3) storage liquid fertilizer and 4) SCB liquid fertilizer located in Gyeong-gi province, Korea. The chemical properties of soils in sandy loam and silty loam before the treatment were similar with the ones in the average paddy fields in Korea. Contrary to this, the amount of available phosphorus in sandy loam was higher than the one in the average paddy fields. The number of living organisms in sandy loam and silty loam treated with storage liquid fertilizer and SCB liquid fertilizer were higher than the ones in sandy loam and silty loam with no-treatment and chemicals. Significant difference (P<0.05) among the treatments and no-treatment was observed in sandy loam rather than in silty loam. The amounts of heavy metals were the highest in both sandy loam and silty loam treated with storage liquid fertilizer and SCB liquid fertilizer. The comparison of heavy metals showed that the ones in silty loam were little bit higher than sandy loam. The leaf lengths and dry weights of rices were increased over time, however, no significant difference was observed among each treament. In addition, the rice yield in sandy loam treated with SCB liquid fertilizer was higher than the ones in sandy loam. The highest rice yield was obtained from sandy loam treated with chemicals, but there was no significant difference between storage liquid fertilizer and SCB liquid fertilizer. While the rate of nutrient absorption by rices was the highest in sandy loam and silty loam treated with chemicals, there was no significant difference in sandy loam and silty loam treated with livestock liquid manure.

Monitoring for Microbiological Quality of Rice Cakes Manufactured by Small-Scale Business in Korea (소규모 가공경영체 떡류의 생산과정에 따른 미생물학적 품질조사를 위한 모니터링)

  • Han, Sangha;Kim, Kyeongjun;Byun, Kye-Hwan;Kim, Duk-Hyun;Choi, Song-yi;Ha, Sang-do
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.400-406
    • /
    • 2021
  • The purpose of this study was to evaluate the microbial contamination level of Korean traditional rice cakes (Garaetteok, Injeolmi, Gyeongdan), as well as manufacturing environment of small-sized businesses in Korea. The contamination levels of total aerobic bacteria, coliforms, and Bacillus cereus in raw materials were 3.76-4.48, 2.21-4.14, and 1.02-1.15 log CFU/g respectively. On the other hand, Escherichia coli was not found. It has been found that the contamination level of total aerobic bacteria, coliforms, and B. cereus in the raw material decreased after the washing process, but it increased again during the soaking and grinding process. However, after the steaming stage, the contamination level increased again during the molding and cooling process, suggesting the need to take cautions in managing cooling water and molded rice cakes in the process. These results suggest that the safe management of cooling water and taking cautions in the drying process after steaming of rice cakes are necessary for controlling cross-contamination. No E. coli was detected during the manufacturing process involving all tested rice cakes. The microbial contamination level of manufacturing environment such as rice grinder and rice cake forming machine was high. Therefore, in terms of food safety strategy, it is necessary to consider introducing systematic cleansing and disinfection procedure to processing equipment and environment for the sake of reducing microbiological risks.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

Cultivation Demonstration of Paprika (Capsicum annuum L.) Cultivars Using the Large Single-span Plastic Greenhouse to Overcome High Temperature in South Korea (고온기 대형 단동하우스를 이용한 파프리카 품종별 재배실증)

  • Yeo, Kyung-Hwan;Park, Seok Ho;Yu, In Ho;Lee, Hee Ju;Wi, Seung Hwan;Cho, Myeong Cheoul;Lee, Woo Moon;Huh, Yun Chan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • During the growing period, the integrated solar radiation inside the greenhouse was 12.7MJ·m-2d-1, and which was 90% of the average daily global radiation outside the greenhouse, 14.1MJ·m-2d-1. The 24-hour average temperature inside the greenhouse from July to August, which has the highest temperature of the year, was 3.04℃ lower than the outside temperature, and 4.07℃ lower after the rainy season. Before the operation of fog cooling system, the average daily RH (%) was lowered to a minimum of 40% (20% for daytime), making it inappropriate for paprika cultivation, but after the operation of fog system, the daily RH during the daytime increased to 70 to 85%. The average humidity deficit increased to a maximum of 12.7g/m3 before fog supply, but decreased to 3.7g/m3 between July and August after fog supply, and increased again after October. The daytime residual CO2 concentration inside the greenhouse was 707 ppm on average during the whole growing period. The marketable yield of paprika harvested from July 27th to November 23rd, 2020 was higher in 'DSP-7054' and 'Allrounder' with 14,255kg/10a and 14,161kg/10a, respectively, followed by 'K-Gloria orange', 'Volante' and 'Nagono'. There were significant differences between paprika cultivars in fruit length, fruit diameter, soluble solids (°Brix), and flash thickness (mm) of paprika produced in summer season at large single-span plastic greenhouse. The soluble solids content was higher in the orange cultivars 'DSP-7054' and 'Naarangi' and the flesh thickness was higher in the yellow and orange cultivars, with 'K-Gloria orange' and 'Allrounder' being the thickest. The marketable yield of paprika, which was treated with cooling and heating treatments in the root zone, increased by 16.1% in the entire cultivars compared to the untreated ones, increased by 16.5% in 'Nagano', 10.3% in the 'Allrounder', 20.2% in the 'Naarangi', and 17.3% in 'Raon red'.

Thrips Infesting Hot Pepper Cultured in Greenhouses and Variation in Gene Sequences Encoded in TSWV (시설재배지 고추를 가해하는 총채벌레류와 TSWV 유전자 서열 변이)

  • Kim, Chulyoung;Choi, Duyeol;Kang, Jeong Hun;Ahmed, Shabbir;Kil, Eui-Joon;Kwon, Gimyeon;Lee, Gwan-Seok;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.387-401
    • /
    • 2021
  • Thrips infesting hot peppers were monitored in greenhouses using yellow sticky traps. In addition, the hot peppers infected with tomato spotted wilt virus (TSWV) were observed during the monitoring period. The flower thrips (Frankliniella intonsa) were initially trapped at a low density just after transplanting seedlings of hot peppers at late March. The western flower thrips (Frankliniella occidentalis) were trapped after mid April. These two thrips represented more than 98% of the total thrips attracted to the traps after May, in which F. intonsa showed higher occurrence frequency than F. occidentalis. The total number of thrips had two peaks at mid May with a small and short-term peak and at June-July with a large and long-term peak. The trapped thrips exhibited inconsistent sex ratios, suggesting a seasonal parthenogenesis. Different geographical populations were varied in cytochrome oxidase I sequences, in which local populations in Andong shared a high sequence similarity. TSWV-infected hot peppers, which might be mediated by these two thrips species, were observed and confirmed by an immunoassay kit and a molecular diagnosis using RT-PCR. In addition, the TSWV was detected in F. occidentalis collected from the infected hot peppers. Three open reading frames (NSS, N, and NSM) of the isolated TSWV genomes were sequenced and showed multiple point mutations containing missense mutations among geographical variants. When the isolated TSWV was fed to nonvirulent thrips of F. occidentalis, the virus was detected in both larvae and adults. However, the viral replication occurred in larvae, but not in adults.

Evaluation of Bioassay Methods to Assess Bacterial Soft Rot Resistance in Radish Cultivars (무 품종의 세균성 무름병 저항성 생물검정법 평가)

  • Afroz, Tania;Hur, Onsook;Ro, Nayoung;Lee, Jae-eun;Hwang, Aejin;Kim, Bichsaem;Assefa, Awraris Derbie;Rhee, Ju Hee;Sung, Jung Sook;Lee, Ho-sun;Hahn, Bum-Soo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.609-616
    • /
    • 2021
  • Bacterial soft rot, caused by Pectobacterium carotovorum subsp. carotovorum (Pcc), is one of the destructive diseases of radish (Raphanus sativus) in Asian countries. The objective of this study was to establish an efficient bioassay method for the evaluation of bacterial soft rot resistance in commercial radish cultivars. First, an efficient bioassay method for examining resistance to bacterial soft rot in commercial radish cultivars was investigated. Six commercial radish cultivars were tested under various conditions: two temperatures (25℃ and 30℃), three inoculations methods (drenching, spraying, and root dipping), and two growth stages (two- and four-leaf stages). The results suggested that spraying with 1×106 cfu/ml of bacterial inoculums during the four-leaf stage and incubating at 30℃ could be the most efficient screening method for bacterial soft rot resistance in commercial radish cultivars. Second, we investigated the degree of resistance of 41 commercial radish cultivars to five Pcc isolates, namely KACC 10225, KACC 10343, KACC 10421, KACC 10458, and KACC 13953. KACC 10421 had the strongest susceptibility in terms of moderately resistant disease response to bacterial soft rot. Out of the 41 radish cultivars, 13 were moderately resistant to this pathogen, whereas 28 were susceptible. The moderately resistant radish cultivars in this investigation could serve as resistance donors in the breeding of soft rot resistance or could be used to determine varietal improvement for direct use by breeders, scientists, farmers, researchers, and end customers.

Genetic diversity and relationships of Korean, Japanese, and Chinese Jilin provincial wild soybeans (Glycine soja Sieb. and Zucc.) based on SSR markers (한국, 일본 및 중국 지린성 야생콩(Glycine soja Sieb. and Zucc.)의 SSR마커에 의한 유전적 다양성과 유연관계)

  • Jang, Seong-Jin;Park, Su-Jeong;Piao, Xiang-Min;Song, Hang-Lin;Hwang, Tae-Young;Cho, Yong-Gu;Liu, Xian-Hu;Woo, Sun-Hee;Kang, Jung-Hoon;Kim, Hong-Sig
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.87-99
    • /
    • 2010
  • Genetic diversity and relationships within and among Korean, Japanese and Chinese Jilin provincial wild soybeans based on SSR markers were evaluated to enlarge genetic variation in soybean breeding in the future. A total of 184 wild soybeans including 67 Korean, 71 Japanese and 46 Chinese Jilin provincial wild soybeans were analyzed to evaluate genetic diversity and relationships based on 23 SSR markers. Korean and Japanese wild soybeans were obtained from National Agrobiodiversity Center, Korea, and Biological Resource Center in Lotus and Glycine, Frontier Science Research Center, University of Miyazaki, Japan, respectively. Chinese wild soybeans were collected from Jilin province, China. Twenty three SSR markers generated a total of 964 alleles with an average of 41.9 alleles per marker. Number of alleles ranged from 23 (Satt635) to 56 (Satt157). Genetic diversity (PIC value) of 184 wild soybeans ranged from 0.880 to 0.968 with an average of 0.945. Number of alleles for Korean, Japanese and Chinese Jilin provincial wild soybeans was 513 with an average of 22.3, 511 with an average of 22.2, and 312 with an average of 13.6 per marker, respectively. PIC value for Korean, Japanese and Chinese Jilin provincial wild soybeans was similar with an average of 0.905, 0.897, and 0.850, respectively. Cluster analysis based on genetic distances estimated by SSR markers classified wild soybeans into 3 clusters. Cluster I included only Chinese Jilin provincial wild soybeans. Cluster II included most of Japanese wild soybeans including 5 Korean wild soybeans. Cluster III included most of Korean wild soybeans including 6 Japanese and 1 Chinese Jilin provincial wild soybeans. Cluster I was not subclassified, but cluster II and III were subclassified into various groups. Genetic distance evaluated by SSR markers between Korean and Japanese wild soybeans was closer than that of between Korean and Chinese Jilin provincial, and between Japanese and Chinese Jilin provincial wild soybeans.