DOI QR코드

DOI QR Code

Cultivation Demonstration of Paprika (Capsicum annuum L.) Cultivars Using the Large Single-span Plastic Greenhouse to Overcome High Temperature in South Korea

고온기 대형 단동하우스를 이용한 파프리카 품종별 재배실증

  • 여경환 (국립원예특작과학원 채소과) ;
  • 박석호 (국립원예특작과학원 시설원예연구소) ;
  • 유인호 (국립원예특작과학원 채소과) ;
  • 이희주 (국립원예특작과학원 채소과) ;
  • 위승환 (국립원예특작과학원 채소과) ;
  • 조명철 (국립원예특작과학원 채소과) ;
  • 이우문 (국립원예특작과학원 채소과) ;
  • 허윤찬 (국립원예특작과학원 약용작물과)
  • Received : 2021.10.05
  • Accepted : 2021.10.26
  • Published : 2021.10.31

Abstract

During the growing period, the integrated solar radiation inside the greenhouse was 12.7MJ·m-2d-1, and which was 90% of the average daily global radiation outside the greenhouse, 14.1MJ·m-2d-1. The 24-hour average temperature inside the greenhouse from July to August, which has the highest temperature of the year, was 3.04℃ lower than the outside temperature, and 4.07℃ lower after the rainy season. Before the operation of fog cooling system, the average daily RH (%) was lowered to a minimum of 40% (20% for daytime), making it inappropriate for paprika cultivation, but after the operation of fog system, the daily RH during the daytime increased to 70 to 85%. The average humidity deficit increased to a maximum of 12.7g/m3 before fog supply, but decreased to 3.7g/m3 between July and August after fog supply, and increased again after October. The daytime residual CO2 concentration inside the greenhouse was 707 ppm on average during the whole growing period. The marketable yield of paprika harvested from July 27th to November 23rd, 2020 was higher in 'DSP-7054' and 'Allrounder' with 14,255kg/10a and 14,161kg/10a, respectively, followed by 'K-Gloria orange', 'Volante' and 'Nagono'. There were significant differences between paprika cultivars in fruit length, fruit diameter, soluble solids (°Brix), and flash thickness (mm) of paprika produced in summer season at large single-span plastic greenhouse. The soluble solids content was higher in the orange cultivars 'DSP-7054' and 'Naarangi' and the flesh thickness was higher in the yellow and orange cultivars, with 'K-Gloria orange' and 'Allrounder' being the thickest. The marketable yield of paprika, which was treated with cooling and heating treatments in the root zone, increased by 16.1% in the entire cultivars compared to the untreated ones, increased by 16.5% in 'Nagano', 10.3% in the 'Allrounder', 20.2% in the 'Naarangi', and 17.3% in 'Raon red'.

본 연구는 고온기 원예작물의 안정 생산을 위해 대형 단동하우스 '사계절하우스'를 파프리카 재배에 활용 시 시설 내부 기상환경 및 파프리카 품종별 생육, 수량, 품질 등을 분석하고 근권냉방 효과 등을 구명하여 파프리카 재배환경 조건을 최적화 하기 위한 기초자료로 사용하고자 수행하였다. 정식 후부터 재배 종료 시점(2020년 5-11월)까지 시설내 평균 적산광량은 12.7MJ·m-2d-1로, 온실외부의 평균 광량인 14.1MJ·m-2d-1의 90% 수준으로 나타났다. 일 년중 가장 기온이 높은 7-8월의 온실내 24시간 평균온도는 외기보다 3.04℃ 낮았고, 장마가 끝난 8월 12일 이후에는 평균 4.07℃ 낮게 나타났다. 시설 내 포그 냉방 가동(6월 13일) 이전 일평균 상대습도는 최저 40%(주간 20%) 수준까지 떨어져 작물재배에 적합하지 않은 상태였으나 포그를 가동한 이후 주간 상대습도는 70-85% 수준으로 증가된 것으로 나타났다. 평균 수분부족분(humidity deficit)은 포그 공급전에는 최고 12.7g/m3 까지 상승하여 매우 건조한 조건이었으나, 포그 공급 후 고온기(7-8월)에 평균 3.7g/m3으로 감소하였고, 저온기(10-11월)로 갈수록 다시 증가되는 경향이었다. 주간 잔존 CO2 농도는 전체 재배기간동안 평균 707ppm으로 나타났다. '20년 7월 27일부터 11월 23일까지 수확한 파프리카의 품종별 상품수량(kg/10a)은 주황색 품종 'DSP-7054'과 황색 품종 'Allrounder'이 각각 14,255kg/10a와 14,161kg/10a로 다른 품종에 비해 높았고, 다음으로 주황색 'K-Gloria orange', 황색 'Volante', 적색 'Nagano' 품종 순으로 나타났다. 사계절하우스에서 고온기(8월)에 생산된 대과종 파프리카의 품종별 과실품질 특성을 조사한 결과, 과고, 과폭, 과실당도, 과육두께에서 품종 간 유의성이 인정되었다. 당도는 주황색 품종인 'DSP-7054'와 'Naarangi'에서 높게 나타났고, 과육두께는 황색과 주황색 품종인 'K-Gloria orange'와 'Allrounder'에서 높게 나타났다. 근권 냉방처리 기간 동안 배지내 일평균 온도는 20.7℃로 나타났고, 근권 난방처리 기간 동안 배지내 일평균 온도는 23.4℃로 나타났다. 근권부 냉난방 처리를 통해 상품수량은 무처리구에 비해 비해 'Nagano' 16.5%, 'Allrounder' 1.3%, 'Naarangi' 20.2%, 및 'Raon red' 17.3% 증가하였고, 품종 전체로는 16.1% 증가하였다. 근권 냉난방처리에 의해 과실의 경도는 4개 품종 평균 5.7% 증가하였으나 다른 품질 지표에서는 유의성있는 차이가 나타나지 않았다.

Keywords

Acknowledgement

본 연구는 IPET 「1세대 스마트플랜트팜 실증 및 고도화사업(과제번호320009-01)」의 지원에 의해 이루어진 것임.

References

  1. Aloni B., L. Karni, Z. Zaidman, and A.A. Schaffer 1996, Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Ann Bot 78:163-168. doi:10.1006/anbo.1996.0109
  2. Arbel A., M. Barak, and A. Shklyar 2003, Combination of forced ventilation and fogging systems for cooling greenhouses. Biosystems Engineering 84:45-55. doi:10.1016/S1537-5110(02)00216-7
  3. Arbel A., O. Yekutieli, and M. Barak 1999, Performance of a fog system for cooling greenhouses. J Agr Eng Res 72:129-136. doi:10.1006/jaer.1998.0351
  4. Bakker J.C. 1989, The effects of temperature on flowering, fruit set and fruit development of glasshouse sweet pepper (Capsicum annuum L.). J Hortic Sci 64:313-320. doi:10.1080/14620316.1989.11515959
  5. British Columbia Ministry of Agriculture, Food and Fisheries (BCMAFF) 2005, Growing greenhouse peppers in British Columbia, pp 189. BC Greenhouse Grower's Association: www.bcgreenhouse.ca
  6. Cho I.H., W.M. Lee, K.B. Kwan, Y.H. Woo, and K.H. Lee 2009, Stable production technique of paprika (Capsicum annuum L.) by hydrogen peroxide treatment at summer. J Bio-Env Con 18:297-301. (in Korean)
  7. Choi K.Y., J.Y. Ko, H.J. Yoo, E.Y. Choi, H.C. Rhee, and Y.B. Lee 2014, Effect of cooling timing in the root zone on substrate temperature and physiological response of sweet pepper in summer cultivation. Kor J Hort Sci Technol 32:53-59. (in Korean) doi:10.7235/hort.2014.13123
  8. Dodd I.C., J. He, C.G.N. Turnbull, S.K. Lee, and C. Critchley 2000, The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. J Exp Bot 51:239-248. doi:10.1093/jexbot/51.343.239
  9. Ha J.B., C.S. Lim, H.Y. Kang, Y.S. Kang, S.J. Hwang, H.S. Mun, and C.G. An 2012, Effect of shading methods on growth and fruit quality of paprika in summer season. J Bio-Env Con 21:419-427. (in Korean) doi:10.12791/KSBEC.2012.21.4.419
  10. Heuvelink E. 1996, Tomato growth and yield: Quantitative analysis and synthesis. PhD. Thesis. Wageningen Univ., The Netherlands.
  11. Jang D.C., K.Y. Choi, J.Y. Heo, and I.S. Kim 2016, Comparison of growth and fruit setting characteristics for selecting the optimum winter-planted paprika cultivars. Korea J Hort Sci Technol 34:424-432. (in Korean) doi:10.12972/kjhst.20160043
  12. Jeong W.J., D.J. Myung, and J.H. Lee 2009, Comparison of climatic conditions of sweet pepper's greenhouse between Korea and the Netherlands. J Bio-Env Con 18:244-252. (in Korean)
  13. Kim M.K., K.S. Kim and H.J. Kwon 2001, The cooling effect of fog cooling system as affected by air exchange rate in natural ventilation greenhouse. J Bio-Env Con 10:10-14. (in Korean).
  14. Korea Agro-Fisheries & Food Trade Corporation 2018, Trends in paprika's domestic production and overseas markets. KATI Agricultural and food export information. aT Export business office, Produce export department, Naju, Korea, pp 1-9.
  15. Lee J.H., J.K. Kwon, O.K. Kwon, Y.H. Choi, and D.K. Park 2002, Cooling efficiency and growth of tomato as affected by root zone cooling methods in summer season. J Bio-Env Con 11:81-87.
  16. Lee J.N., E.H. Lee, J.S. Im, W.B. Kim, and Y.R. Yeoung 2008, Fruit characteristics of high temperature period and economic analysis of summer paprika (Capsicum annuum L.) grown at different altitudes. Kor J Hort Sci Technol 26:230-233. (in Korean)
  17. Lee J.P., J.H. Lee, D.J. Myoung, and Y.B. Lee 2011, Greenhouse environmental control and Paprika cultivation technology. Research Center for common Technology of Export Fruit Vegetables, pp 190. (in Korean)
  18. Mahmoud M.S. 2015, Experimental study to evaluate mist system performance. International Journal of Innovative Research in Advance Engineering (IJIRAE) 9:41-48. https://www.researchgate.net/publication/305171644
  19. Marcelis L.F.M., E. Heuvelink, L.R. Baan Hofman-Eijer, J. Den Bakker, and L.B. Xue 2004, Flower and Fruit abortion in sweet pepper in relation to source and sink strength. J Expt Bot 55:2261-2268. doi:10.1093/jxb/erh245
  20. Na T.S., K.J. Choi, B.K. Yun, M.S. Cho, H.G. Kim, and H.J. Kim 2011, Cooling effect on bell pepper on glass house in summer. Kor J Hort Sci Technol 29:79. (Abstr.) (in Korean)
  21. Nam S.W., Y.S. Kim, I.M. Sung, and G.H. Ko 2012, Cooling efficiency of low pressure compressed air fogging system in naturally ventilated greenhouses. J Korean Soc Agric Eng 54:49-55 (in Korean). doi:10.5389/KSAE.2012.54.5.049
  22. Niam A.G. and H. Suhardiyanto 2019, Root-zone cooling in tropical greenhouse: a Review. IOP Conference Series: Materials Science and Engineering 557:012044. doi:10.1088/1757-899x/557/1/012044
  23. Park S.H., J.P. Moon, J. K. Kim and S.H. Kim 2020, Development of fog cooling control system and cooling effect in greenhouse. Protected Hort Plant Fac 29:265-276. (in Korean) doi:10.12791/KSBEC.2020.29.3.265
  24. Pressman E., H. Moshkovitch, K. Rosenfeld, R. Shaked, B. Gamliel, and B. Aloni 1998, Influence of low night temperatures on sweet pepper flower quality and the effect of repeated pollinations, with viable pollen, on fruit setting. J Hortic Sci Biotechnol 73:131-136. doi:10.1080/14620316.1998.11510955
  25. Rhee H.C., G.L. Choi, K.H. Yeo, M.W. Cho, and I.W. Cho 2015, Effect of fog-cooling on the growth and yield of hydroponic paprika in grown summer season. Protected Hort Plant Fac 24:258-263. (in Korean) doi:10.12791/KSBEC.2015.24.3.258
  26. Rural Development Administration (RDA) 2018, Smart Greenhouse Environment Management Guidelines (2018). pp 26-35. (in Korean).
  27. Sethi V.P., and S.K. Sharma 2007, Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol Energy 81:1447-1459. doi:10.1016/j.solener.2007.03.004
  28. Toida H., T. Kozai, and K. Ohyama 2006, Enhancing fog evaporation rate using an upward air stream to improve greenhouse-cooling performance. Biosystems Engineering 93:205-211. doi:10.1016/j.biosystemseng.2005.11.003
  29. Won J.H., B.C. Jeong, J.K. Kim, and S.J. Jeon 2009, Selection of suitable cultivars for the hydropoincs of sweet pepper (Capsicum annuum L.) in the alpine area in summer. J Bio-Env Con 18:425-430. (in Korean)