• 제목/요약/키워드: Critical velocity

검색결과 830건 처리시간 0.035초

동축이중원관 분류에 있어서의 유동 특성에 관한 연구 (A Study on the Flow Characteristics in Double Coaxial Pipe Jets)

  • 신창환;김경훈
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.46-53
    • /
    • 1996
  • The present study is aiming at improving the performance of main nozzle of an air jet loom with a modified reed and auxiliary nozzles. The double coaxial pipe jets consisting of a central air jet and an annular air jet have been experimentally investigated. The duter jet has a potential core and a constant velocity. The inner jet through an inner long pipe is induced by the subatmospheric pressure near the inner nozzle edge, and the jet velocity of an inner pipe is always lower than that of a outer pipe. The static pressures of the main nozzle over a wide range of the nozzle tank pressure were measured, and the nozzle velocity and Mach numbers were analytically calculated. Experiment81 results indicate that the critical condition of Mach number of unity to occur at the two positions in a main nozzle; one of them is the needle tip and the other is the acceleration tube exit An increase in the tank pressure causes the critical throat condition to occur at the two positions above. The velocity of acceleration-tube exit is maximum at the critical length L* and flow patter in acceleration-tube over critical lengh remains unstable.

  • PDF

방조제 체절시 사석 및 돌망태의 적정규모 산정을 위한 매뉴얼 개발 -I. 이론 및 모형의 검증- (Assessment Manual for Optimization of Structural Scale of Stone and Gabion at the Final Closure of Sea Dike -I. Verification of Theories and Models-)

  • 송현구;김종규;황인찬
    • 한국해안·해양공학회논문집
    • /
    • 제21권2호
    • /
    • pp.136-144
    • /
    • 2009
  • 방조제 시공구간의 사석 및 돌망태의 적정규모를 산정하기 위한 매뉴얼을 개발하였다. 본 매뉴얼은 새만금 방조제 끝막이 구간의 상고공, 바닥보호공, 1차 사석재 구간을 대상으로 한 재료의 이동한계유속을 측정한 수리모형실험 결과와 기존의 경험공식에서 산정되는 규모별 이동한계유속의 비교 및 검증을 통해 개발되었다. 또한 현재까지 수행되지 않았던 사석과 돌망태를 혼용할 경우에 대하여도 이동한계유속을 측정하여 매뉴얼에 추가하였다. 본 매뉴얼은 새만금방조제 끝막이 기간 동안 발생유속에 대한 일별로 시공구간별 적정규모를 제시하였으며, 새만금방조제 끝막이가 끝난 후 그 적용성이 상당히 높게 평가되었다.

초임계압 보일러용 유화연료의 물성치와 분사압력이 분무특성에 미치는 효과 (The Effect of Property of Emulsified Fuel and Injection Pressure on the Spray Characteristics for Super-Critical-Pressure Burner)

  • 이인수;정지원;차건종;김덕줄
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.38-44
    • /
    • 2002
  • The purpose of this study is to investigate the effect of the volume fraction of water and injection pressure on the spray characteristics of water/oil emulsified fuel injected from the pressure swirl atomizer. The mixture of light oil and water by using impeller mixer was performed. The spray characteristics such as SMD and velocity were measured using PDPA. The injection pressures were 7.5, 100, 200 and $300kgt/cm^2$ and volume fractions of water in emulsified fuel were 0, 10, 20 and 30%, respectively. The measurement sections were at 30, 60 and 90mm from injection nozzle tip. SMD and velocity of emulsified fuel were larger gradually by increasing the volume fraction of water in emulsified fuel. The spray angle was decreased and axial velocity was increased with increase in water content. It was found that the relative SMD ratio was increased more greatly than the relative axial velocity ratio in super critical pressure. The relative SMD ratio was increased and the relative axial velocity ratio was decreased with increase injection pressure at spray downstream.

  • PDF

일방향 도로터널내 화재 발생시 역류를 막는 환기속도결정에 관한 축소모형실험 (The Reduced Model Test for the Determination of Ventilation Velocity to Prevent Backflow in Uni-directional Road Tunnel during a Fire Disaster)

  • 유영일;이희근
    • 터널과지하공간
    • /
    • 제8권2호
    • /
    • pp.107-117
    • /
    • 1998
  • In the case of a fire disaster in a uni-directional road tunnel, it is important to determine the critical ventilation velocity to prevent the backflow travelling toward the tunnel exit where vehicles are stopped. The critical ventilation velocity is horizontal velocity to prevent hot smoke from moving toward the tunnel exit. According to Froude modelling, the model tunnel whcih was 300mm in diameter and 21 m in length was made of acryl tubes. Inner section of acryl tubes was clothed with polycarbonate. 1/20 scaled model vehicles were installed to simulate the situation that vehicles are stopped in the tunnel exit. Methanol in a pool type burner was burned in the middle of tunnel to simulate a fire hazard. In this study, the basis of determining the critical ventilation velocity is the ventilation flow rate that is able to maintain the allowable CO concentration in the tunnel section. We assumed that the allowable CO concentration was backflow dispersion index. Futhermore, We intended to find out CO distribution and temperature distribution according as we changed ventilation velocity. The results of this study were that no backflow happened when ventilation velocity was 0.52 m/s in the case of 5.75 kW. If we adapt these results of a fire disaster releasing 10MW heat capacity in real tunnel which is 400m in length, no backflow happens when ventilation velocity is 2.31m/s. After we figured out dimensionless heat release rate and dimensionless ventilation velocity of model test and those of real test to verify experimental correctness, we tried to find out correlation between experimental results of model tunnel and those of real tunnel.

  • PDF

전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석 (Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix)

  • 이영신;천일환
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.366-375
    • /
    • 1991
  • 본 연구에서는 보 이론(beam theory)의 변위함수(displacement function)를 도입하고 전달행렬법을 이용하여 각 배관요소의 경계조건에 대한 고유 진동수와 배관 의 불안정성을 일으키는 유체의 임계속도(critical velocity)를 계산 평가하고, 실험 으로 입증된 Blevins의 결과치와 비교하였다.

사석의 수리적 안정식의 비교분석 (Comparative Analyses on Hydraulic Stability Formulae of Riprap)

  • 최흥식;이민호
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.149-155
    • /
    • 2008
  • 사석의 안정성 분석을 위해 Isbash식, California 도로국식, Netherlands간이식, ASCE식, Pilarczk식, Maynord식의 검토를 수리모형실험을 통해서 수행하였다. 사석의 경우는 직경과 중량이 커질수록 한계유속이 크게 나왔으며, 그에 따른 수심에 대한 사석의 직경비, Froude수, 평균유속에 따른 전단유속비, Shields수는 상관성이 크게 나왔다. 공칭직경에 대한 안정식은 6가지 식이 모두 크게 산정하고 있고, 그중 미 공병단에서 제시한 Maynord식이 비교적 잘 맞는 것으로 나타났다. 중량산정식의 경우 Isbash식, Netherlands식, Pilarczk식은 중량이 유속에 대하여 과대추정 되었고, 켈리포니아주 정부 도로국 식이 실험결과와 일치하는 것으로 나타났다. 단위중량이 작은 석고재료에 의한 모형사석 실험에서는 형상계수가 클수록 한계유속이 크게 나타났고, 또한 임의배열일 때보다 규칙배열일 경우 한계유속이 크게 측정 되었다. 이로서 형상계수와 결속의 정도가 사석의 안정성에 중요한 함수라는 것을 알 수 있다.

조화 맥동 유체를 포함하는 직관의 강제진동응답 해석 (Forced Vibration Analysis of Pipe Conveying Harmonically Excited Fluid)

  • 오준석;정의봉;서영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.277-283
    • /
    • 2003
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So it should be also taken into consideration that the effect of pulsating fluid in pipe design. The research of the piping system vibration due to a fluid pulsation has been studied by many people. But almost is dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted.

  • PDF

내부 유체의 조화 가진에 의한 배관의 주파수응답해석 (Frequency Response Analysis of Pipe Conveying Harmonically Excited Fluid)

  • 오준석
    • 한국군사과학기술학회지
    • /
    • 제8권1호
    • /
    • pp.81-91
    • /
    • 2005
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So the effects of pulsating fluid in pipe should be also taken into consideration for better analysis. The research of the vibration of piping system due to a fluid pulsation has been studied by many people. But most of them are dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted. In order to analyze the system numerically, the descretized equation is formulated by using FEM(Finite Element Method). And the results of this method are compared with those of AMM(Assumed Mode Method) which were used by many researcher earlier.

컴퓨터 시뮬레이션에 의한 트랙터와 트레일러의 선회운동 (Turning Behavior of Tractor-Trailer System by Computer Simulation)

  • 김종훈;최창현
    • Journal of Biosystems Engineering
    • /
    • 제16권4호
    • /
    • pp.346-354
    • /
    • 1991
  • Turning behavior of tractor-trailer system was studied to guide the tractor and trailer. Based upon kinematic relationship between the tractor and the trailer, a mathematical model was developed and analyzed by computer simulation. A field test was carried out to verify the mathematical model. Following conclusions were drawn from this study. 1. A mathematical model and a simulation program for turning behavior of tractor-trailer system were developed. 2. The results of the field tests showed that the RMS errors were less than 0.33m and the mathematical model based upon kinematic relationship can be used for mapping guidance system for tractor and trailer. 3. As the steering angle was increased, the turning radius was decreased. When the tractor travelled at the low speed, the travel speed of the tractor did not affect turning radius but did affect running time and stability for steering. 4. When the tractor travelled under the critical velocity, the towed trailer followed smoothly. When the the tractor travelled faster than the critical velocity, the towed trailer oscillated. The critical velocity was determined from the specification of the tractor and the trailer.

  • PDF

Vibration and stability of fluid conveying pipes with stochastic parameters

  • Ganesan, R.;Ramu, S. Anantha
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.313-324
    • /
    • 1995
  • Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.