• 제목/요약/키워드: Critical size effect

검색결과 428건 처리시간 0.027초

Theoretical Study of Coherent Acoustic Inverse Method for Bubble Sizing in Bubbly Water

  • Choi, Bok-Kyoung;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.3-8
    • /
    • 1996
  • The bubble size distribution is critical information to understand sound propagation and ambient noise in the ocean. To estimate the bubble size distribution in a bubbly water, the sound attenuation has been only in the conventional acoustic bubble sizing method without considering the sound speed variation. However, the effect of the sound speed variation in bubbly water cannot be neglected because of its compressibility variation. The sound attenuation is also affected by the sound speed variation. In this paper, a coherent acoustic bubble sizing inverse technique is introduced as a new bubble sizing technique with considering sound speed variation as well as the sound attenuation. This coherent sizing method is theoretically verified with the bubble distribution functions of single-size, Gaussian, and power-law functions. Its numerical test results with the coherent acoustic bubble sizing method show good agreement with the given bubble distributions.

  • PDF

AA2024/$SiC_P$ 복합재료의 열간 가공성에 미치는 강화상 크기의 영향 (Effect of SiC Particle Size on Hot Workability of AA2024/$SiC_P$ Composites)

  • 고병철;홍흥기;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.81-84
    • /
    • 1997
  • The hot deformation behavior of SiCp/AA2024 composites reinforced with different sizes of SiCp reinforcements (1, 8, 15, 36, and 44${\mu}{\textrm}{m}$) was investigated by hot torsion tests. The hot restoration of the composites depending on the SiCp reinforcements particle size was studied from the effective stress - strain curves. Dynamic recrystallization (DRX) was occurred in the SiCp/AA2024 composites during the hot deformation at 320 - 43$0^{\circ}C$ under a strain rate of 1.0/sec. Also, the critical strain for DRX decreased with decreasing the reinforcement size of SiCp from 44 to 8${\mu}{\textrm}{m}$. The composite reinforced with SiCp of 8${\mu}{\textrm}{m}$ showed the highest flow stress (265 MPa) and the work hardening rate at 32$0^{\circ}C$ under a strain rate of 1.0/sec.

  • PDF

Effects of Cyclic Structure of Ammonium Ions on Capacitance in Electrochemical Double Layer Supercapacitors

  • Hong, Jeehoon;Hwang, Byunghyun;Lee, Junghye;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권1호
    • /
    • pp.1-6
    • /
    • 2017
  • The conductivity of the electrolyte used plays a critical role in the optimization of the performance of electrochemical double layer capacitors. However, when the difference in the conductivities of different electrolytes is not significant (only 10-20%), the conductivity has little effect on the capacitance. On the other, unlike the conductivity and viscosity of the electrolyte, the cation size directly influences the capacitance. Cyclic ions have a smaller effective radius than that of the corresponding acyclic ions because the acyclic alkyl groups have a greater number of conformational degrees of freedom, such as the rotational, bending, and stretching modes. Consequently, because of the smaller effective size of the cyclic ions, cells containing electrolytes with such ions exhibit higher capacitances than do those with their acyclic counterparts.

Analysis of Excluded Volume Effect in Theta Solvent Systems of Polymethyl Methacrylate and Polystyrene by Means of a Modified Scaled Temperature Parameter

  • 김명주;박일현
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권11호
    • /
    • pp.1255-1260
    • /
    • 2001
  • The expansion of two different kinds of hydrodynamic size of polymethyl methacrylate (PMMA Mw: 1.56- 2.04 ${\times}$ 106 g/mol) has been measured by dynamic light scattering and viscometry above the Flory $\theta$ temperature of the variou s solvents such as n-butyl chloride, 3-heptanone, and 4-heptanone. The expansion of PMMA chains was analyzed in terms of universal temperature parameters and also compared with previous results of polystyrene (PS) system. First it was found that simple $\tau/{\tau}c$ parameter no longer had its universality for the expansion behavior of hydrodynamic size in the chemically different linear polymer chains. However after modifying ${\tau}/{\tau}c$ parameter into $(Mw/Ro2)3}2(\tau/\tauc)$, we observed a much better universality for both PMMA and PS systems. Here Mw, Ro, $\tau[=(T-{\theta}$)/${\theta}$]$, and ${\tau}c[=({\theta}-Tc)/Tc]$ are defined as the weight average molecular weight, the unperturbed end-to-end distance, the reduced temperature and the reduced critical temperature, respectively.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

중환자실의 욕창 예방 중재 프로그램의 효과 : 메타 분석 (Effectiveness of the Intervention Programs for Pressure Ulcer Prevention in Intensive Care Units : A Meta-analysis)

  • 강현욱;고지운
    • 중환자간호학회지
    • /
    • 제11권1호
    • /
    • pp.67-78
    • /
    • 2018
  • Purpose : A meta-analysis was conducted to identify the effectiveness of strategies designed to prevent the incidence and prevalence of pressure ulcers in intensive care units (ICUs). Method : The search strategy was designed to retrieve studies both published and unpublished between 2007 and 2017 including studies in English across PubMed and CINAHL, as well as in Korean across RISS, DBPia, NDSL, KISS, and NAL. All adult ICU participants were 18 years or over. Inclusion criteria were randomized controlled trials, quasi-experimental and comparative studies. Two independent reviewers conducted quality assessments of the included studies by Scottish Intercollegiate Guidelines Network. A Review Manager 5 was used to analyze effect sizes and to identify possible sources of heterogeneity among the studies. Results : The odds ratio (OR) effect sizes were all statistically significant. The OR of total effect size was 0.30(95% CI: 0.19, 0.47), care bundle was 0.37(95% CI: 0.24, 0.57), position change was 0.45(95% CI: 0.10, 2.08), and a silicone border foam dressing was 0.14 (95% CI: 0.07, 0.29). Conclusion : The preventive interventions for patients in the ICUs have positive impacts on reducing the incidence of pressure ulcers.

전도조건 하에서 표면조도와 액적 직경의 변화에 따른 알루미늄의 액적 증발 냉각 (Evaporation Cooling of Water Droplet on Aluminum with Various Surface Roughness and Droplet Diameter in Conductive Condition)

  • 장충선;최원식
    • 열처리공학회지
    • /
    • 제18권6호
    • /
    • pp.375-382
    • /
    • 2005
  • This paper presents the results of experimental investigation for the effect of heat conduction on the evaporation cooling of water droplet in the process of heat treatment. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter at aluminum. The range of surface temperature is from $80^{\circ}C$ to $140^{\circ}C$, surface roughness is from $R_a=0.18{\mu}m$ to $R_a=1.36{\mu}m$ and droplet diameter is from 2.4 mm to 3.0 mm. The results show that the total evaporation time is shorter for the larger surface roughness, the time averaged heat flux has maximum value for the larger surface roughness and exist the critical heat flux. The total evaporation time has a big influence on the evaporation region for the smaller droplet size, but the total evaporation time has not influence on the nuclear boiling region.

T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향 (Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device)

  • 공창덕;방조혁;이정환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

간호대학생의 액션러닝 기반 교육프로그램 효과에 대한 체계적 문헌고찰 및 메타분석 (A Systematic Review and Meta-Analysis of the Effects of Action Learning-Based Education Program on Nursing Students)

  • 박미현;조용주
    • 실천공학교육논문지
    • /
    • 제16권4호
    • /
    • pp.587-598
    • /
    • 2024
  • 본 연구는 국내 간호대학생을 대상으로 한 액션러닝 기반 교육프로그램의 효과성을 검증하기 위해 시도되었으며 PRISMA 가이드라인에 따라 체계적인 검토 및 메타 분석을 수행하였다. 2013년 1월부터 2023년 12월까지로 기간을 한정하여 DBpia, RISS, KCI, KISS, SCIENCE ON 전자데이터베이스를 통해 총 779편의 문헌을 검색하였고 문헌 선정 기준을 충족한 13편의 문헌을 선정하였다. 연구자 2명이 독립적으로 ROBINS-I을 이용하여 질평가를 시행하였으며 액션러닝 기반 교육프로그램의 효과크기는 R 프로그램 'Meta package'를 사용하여 분석하였다. 액션러닝 기반 교육프로그램이 문제해결능력에 미치는 효과크기는 ESr=.68 (95% CI=.30~1.06)이었고, 의사소통능력에 미치는 효과크기는 ESr =.39 (95% CI=-.08~.85)이었으며, 비판적 사고에 미치는 효과크기는 ESr=.26 (95% CI=.02~.50)이었다. 간호대학생에게 액션러닝 기반 교육프로그램은 문제해결능력과 비판적 사고를 향상시키는데 효과적인 교육방법이다. 따라서, 간호교육 현장에서 간호대학생들의 임상 실무 역량 개발을 위해 액션러닝 교육 기법의 적극적으로 도입할 필요가 있다.

산화철 나노입자의 크기에 따른 강자성 공명 신호의 선폭 특성 (Size Dependence of FMR Linewidth in Iron Oxide Nanoparticles)

  • 김동영;윤석수
    • 한국자기학회지
    • /
    • 제24권1호
    • /
    • pp.11-17
    • /
    • 2014
  • 본 연구에서는 열 분해법으로 크기가 각각 D=4.67 nm, 5.64 nm 및 6.34 nm인 균일한 산화철 나노입자를 제조하여 강자성 공명 신호를 측정하였다. 측정된 강자성 공명 신호는 입자의 부피가 로그 정규 확률 분포를 갖는 초상자성 나노입자에 대하여 계산한 결과와 비교 분석하였다. 강자성 공명 신호의 선폭은 나노입자의 크기가 증가함에 따라 넓어졌으며, tanh($V^2$)에 비례하는 특성을 보였다. 이러한 나노입자의 크기에 따른 선폭 증가는 나노입자들 표면에 분포하는 표면 스핀과 결정 이방성 특성을 갖는 내부 스핀들에 의한 두 가지 강자성 공명 신호의 중첩에 기인함을 알 수 있었다.