Browse > Article
http://dx.doi.org/10.5229/JECST.2016.8.1.1

Effects of Cyclic Structure of Ammonium Ions on Capacitance in Electrochemical Double Layer Supercapacitors  

Hong, Jeehoon (Department of Chemistry, Sangmyung University)
Hwang, Byunghyun (Department of Chemistry, Sangmyung University)
Lee, Junghye (Department of Chemistry, Sangmyung University)
Kim, Ketack (Department of Chemistry, Sangmyung University)
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.1, 2017 , pp. 1-6 More about this Journal
Abstract
The conductivity of the electrolyte used plays a critical role in the optimization of the performance of electrochemical double layer capacitors. However, when the difference in the conductivities of different electrolytes is not significant (only 10-20%), the conductivity has little effect on the capacitance. On the other, unlike the conductivity and viscosity of the electrolyte, the cation size directly influences the capacitance. Cyclic ions have a smaller effective radius than that of the corresponding acyclic ions because the acyclic alkyl groups have a greater number of conformational degrees of freedom, such as the rotational, bending, and stretching modes. Consequently, because of the smaller effective size of the cyclic ions, cells containing electrolytes with such ions exhibit higher capacitances than do those with their acyclic counterparts.
Keywords
Cyclic ammonium ion; EDLC; Ion size;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A.R. Koh, B. Hwang, K. Chul Roh, K. Kim, Phys. Chem. Chem. Phys., 2014, 16(29), 15146-15151.   DOI
2 K. Chiba, T. Ueda, H. Yamamoto, Electrochemistry, 2007, 75(8), 664-667.   DOI
3 J.H. Park, S.Y. Lee, J.H. Kim, S. Ahn, J. Electrochem. Sci. Technol., 2012, 3(3), 143-148.   DOI
4 S. Paul, J.-H. Kim, D.-W. Kim, J. Electrochem. Sci. Technol., 2011, 2(2), 91-96.   DOI
5 Y. Lai, X. Chen, Z. Zhang, J. Li, Y. Liu, Electrochim. Acta, 2011, 56(18), 6426-6430.   DOI
6 T. Devarajan, S. Higashiya, C. Dangler, M. Rane-Fondacaro, J. Snyder, P. Haldar, Electrochem. Commun., 2009, 11(3), 680-683.   DOI
7 K. Chiba, T. Ueda, H. Yamamoto, Electrochemistry, 2007, 75(8), 664-667.   DOI
8 Z. Shi, X. Yu, J. Wang, H. Hu, C. Wu, Electrochim. Acta, 2015, 174, 215-220.   DOI
9 E. Perricone, M. Chamas, L. Cointeaux, J.C. Lepretre, P. Judeinstein, P. Azais, F. Beguin, F. Alloin, Electrochim. Acta, 2013, 93, 1-7.   DOI
10 E. Perricone, M. Chamas, J.C. Lepretre, P. Judeinstein, P. Azais, E. Raymundo-Pinero, F. Beguin, F. Alloin, J. Power Sources, 2013, 239, 217-224.   DOI
11 J. Segalini, E. Iwama, P.-L. Taberna, Y. Gogotsi, P. Simon, Electrochem. Commun., 2012, 15(1), 63-65.   DOI
12 H. Wang, L. Pilon, J. Power Sources, 2013, 221, 252-260.   DOI
13 L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Adv. Funct. Mater., 2012, 22(4), 827-834.   DOI
14 T. Han, M.-S. Park, J. Kim, J.H. Kim, K. Kim, Chem. Sci., 2016, 7, 1791-1796.   DOI