Browse > Article

Evaporation Cooling of Water Droplet on Aluminum with Various Surface Roughness and Droplet Diameter in Conductive Condition  

Jang, C.S. (Department of Mechanical Engineering, Kyungpook National University)
Choi, W.S. (Department of Mechanical Engineering, Miryang National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.18, no.6, 2005 , pp. 375-382 More about this Journal
Abstract
This paper presents the results of experimental investigation for the effect of heat conduction on the evaporation cooling of water droplet in the process of heat treatment. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter at aluminum. The range of surface temperature is from $80^{\circ}C$ to $140^{\circ}C$, surface roughness is from $R_a=0.18{\mu}m$ to $R_a=1.36{\mu}m$ and droplet diameter is from 2.4 mm to 3.0 mm. The results show that the total evaporation time is shorter for the larger surface roughness, the time averaged heat flux has maximum value for the larger surface roughness and exist the critical heat flux. The total evaporation time has a big influence on the evaporation region for the smaller droplet size, but the total evaporation time has not influence on the nuclear boiling region.
Keywords
Heat conduction; Evaporation cooling; Water droplet; Surface roughness; Droplet diameter; Time averaged heat flux; Critical heat flux; Total evaporation time; Droplet size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. D. Bernardin and I. Mudawar, Int. J. of Heat Mass Transfer, 38 (1995) 863-873   DOI   ScienceOn
2 D. D. Hall and I. Mudawar, Int. J. of Heat Mass Transfer, 38 (1995) 1201-1216   DOI   ScienceOn
3 D. D. Hall and I. Mudawar, ASME J. Heat Transfer, 117 (1995) 479-488   DOI   ScienceOn
4 J. Kistemajer, Physial, 29 (1963) 96-104
5 J. D. Bernardin, C. J. Stebbins and I. Mudawar, Int. J. of Heat Transfer, 40 (1996) 247-267
6 V. Betta, P. Mazzei, V. Naso and R. Vanoli, J. of Heat Transfer, 101 (1979) 613-616
7 C. Bonacina, S. DelGiudice and G. Comini, J. of Heat Transfer, 101 (1979) 441-446   DOI
8 J. Rizza, J. of Heat Transfer, 103 (1981) 501-507   DOI
9 M. DiMarzo and D.D . Evans, J. of Heat Transfer, 111 (1989) 210-213   DOI
10 S. Kline and F. A. McClintok, Mechanical Engineering, Jan, (1953) 3-8
11 R. J. Moffat, J. of Fluids Engineering, 107 (1985) 173-182   DOI
12 R. J. Moffat, Experimental Thermal and Fluid Science, 1 (1988) 3-17   DOI   ScienceOn
13 T. Jonas, A. Kubitzek and F. Obermeier, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, (1997) 1263-1270
14 B. S. Gottfried, C. J. Lee and K. J. Bell, Int. J. of Heat Mass Transfer, 9 (1966) 1167-1187   DOI   ScienceOn
15 I. Michiyoshi and K. Makino, Int. J. of Heat Mass Transfer, 21 (1978) 605-613   DOI   ScienceOn