• Title/Summary/Keyword: Critical size effect

Search Result 425, Processing Time 0.035 seconds

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Preparation of Micronized Anti-dandruff Agents Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 미립 항비듬제 제조)

  • Shin, Moon-Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.209-215
    • /
    • 2008
  • Iodopropynyl butylcarbamate and climbazole as anti-dandruff agents widely used in cosmetics and pharmaceutics were micronized using supercritical fluid. Supercritical carbon dioxide was selected due to relatively low critical temperature and critical pressure. Iodopropynyl butylcarbamate and climbazole were chosen because of their solubility in supercritical carbon dioxide. The rapid expansion of supercritical solution (RESS) experiments involved investigations of the effect of pressure, temperature on particle size and morphology.

Effect of Initial Particle Size Distribution of (K0.5Na0.5)NbO3 Powders on Microstructure of Their Sintered Ceramics ((K0.5Na0.5)NbO3 세라믹스의 초기 분말 입도 분포가 소결체의 미세구조에 미치는 영향)

  • Yoo, Il-Ryeol;Choi, Seong-Hui;Cho, Kyung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • In this study, the effect of the initial particle size distribution (PSD) of (K0.5Na0.5)NbO3 powders on the microstructure of sintered ceramics was investigated. (K0.5Na0.5)NbO3 powders with uni-, bi-, tri-, and quad-modal PSDs were obtained through a planetary ball-mill. For the specimens sintered at 1080℃, the growth of abnormal grains was promoted from the powders exhibiting quad- and tri-modal PSDs with a high content of large particles, resulting in a microstructure in which huge abnormal grains were predominant. However, as the number of peaks in PSD and the overall particle size decreased, the abnormal grain growth was suppressed and the grain growth of small particles started, resulting in a microstructure with a uniform grain size. For the specimens sintered at 1100℃, huge abnormal grains were not observed due to the decrease in the critical driving force for 2D nucleation even when powders with quad- and tri-modal PSDs were used. It was confirmed that when powder with unimodal PSD was used, a uniform microstructure that was not significantly affected by the sintering temperature could be obtained. The results of this study demonstrate that the microstructure of (K0.5Na0.5)NbO3-based ceramics can be controlled by controlling the particle size of the initial powder.

A Study on the Film-Formation Mechanism by Ionized Cluster Beam Deposition (이온화 클러스터 빔 증착의 박막 형성 기구에 관한 연구)

  • Shin, C.B.;Lee, K.H.;Hwang, G.S.;Moon, S.H.;Cho, W.I.;Yun, K.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.464-472
    • /
    • 1996
  • The mechanism of thin-film formation by Ionized Cluster Beam Deposition(ICBD) was investigated. A simulation program based on the Monte-Carlo method was developed in order to investigate the effects of the acceleration voltage, substrate temperature, activation energy for the surface migration, and critical nuclei size on grain size and surface roughness. Studies of the effect of kinetic energy of clusters on the film formation processes revealed that high acceleration voltage enhanced the surface-migration of adatoms and made it easier for an epitaxial film to be formed. The relaxation time of kinetic energy of adatoms increased with the substrate temperature, which in turn increased the grain size of the crystalline film. This effect was more clearly distinguished when the critical nuclei size was large. The surface-migration activation energy was found to affect the interaction between the adatoms and the substrate and thus the relaxation time of kinetic energy. Investigations of the surface roughness revealed that the acceleration voltage, the substrate temperature, and the surface-migration activation energy exerted a collective effect on the morphology of the film surface.

  • PDF

Microstructural properties of Pt-doped $YBa_{2}Cu_{3}O_{7-x}$ high $T_c$ superconductor prepared by melting method.

  • Song, Jin-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.16-16
    • /
    • 1992
  • We have studied the effect of platinum addition on the supercon ducting properties of YB $a_2$C $u_3$$O_{7-x}$ (123) compound and elucidated the mechanism of fine dispersion of $Y_2$BaCu $O_{5}$(211) particles in YB $a_2$C $u_3$$O_{7-x}$ superconductor prepared by melting method from the metallurgical point of view. In this study, BaCu $O_2$ and CuO-rich phase unreacted during the peritecitc reaction markedly decreased by the 211 powder addition. The 211 particle of Pt-fee sintered samples exhibited 8~10$\mu$m in size, but in 1wt%Pt-added sample, 211 particles were finely dispersed in 123 matrix and the size of 211 particle was about 1~2$\mu$m. And, the critical temperature( $T_{c. zero}$) of Pt doped samples was 91.5K and the transport critical current density ( $J_{c}$) of Pt-doped samples was much more than 10$^4$A/$\textrm{cm}^2$. The high $J_{c}$ and fine dispersion of 211 particles of Pt doped YB $a_2$C $u_3$$O_{7-x}$ superconductor are attributed to $Ba_4$CuP $t_2$ $O_{8}$ compounds formed during the partial melting, which were considered als nucleation sites of 211 particles, rather than Pt inself.han Pt inself.

  • PDF

Composite Effect of Ag and Au in the $Bi_{1.84}\;Pb_{0.34}\;Sr_{1.91}\;Ca_{2.03}\;Cu_{3.06}\;O_{10+\delta}$(110K Phase) High-Tc Superconductor (Ag와 Au가 혼합된 $Bi_{1.84}\;Pb_{0.34}\;Sr_{1.91}\;Ca_{2.03}\;Cu_{3.06}\;O_{10+\delta}$ 산화물 고온초전도체의 초전도특성)

  • 이민수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.241-248
    • /
    • 2003
  • $Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+\delta}$ high $T_{c}$ superconductors containing Ag as an additive were fabricated by a solid-state reaction method. The superconducting properties, such as the structural characteristics, the critical temperatures, the grain size and the image of mapping on the surface were investigated. Samples with Ag and Au of 50 wt% each were sintered at various temperature(820~$850^{\circ}C$). The structural characteristics, the microstructure of surface and the critical temperature with respect to the each samples were analyzed by XRD and SEM, EDS and four-prove methode respectively. The critical temperature showed the result which the Ag additive samples are higher than Au additive samples. The microstructure of the surface showed the tendency which the Ag additive samples become more minuteness than Au additive samples.

Loss Aversion in International Environmental Agreements

  • Iris, Doruk;Tavoni, Alessandro
    • Environmental and Resource Economics Review
    • /
    • v.27 no.2
    • /
    • pp.363-397
    • /
    • 2018
  • We study the impact of loss-aversion and the threat of critical damages from insufficient pollutant abatement, which we jointly call threshold concerns, on the outcome of international environmental agreements. We aim to understand whether concerns for a critical level of damages induce cooperation among countries faced with the well-known free-riding problem, and yield sufficient emission reductions to avoid exceeding the threshold. Specifically, we focus on loss-averse countries negotiating under the threat of either high or low environmental damages. Under symmetry, when countries display identical degrees of threshold concern, we show that such beliefs have a positive effect on reducing the emission levels of both signatories to the treaty and non-signatories, leading to weakly larger coalitions of signatories than in the absence of reference dependence. We then introduce asymmetry, by allowing countries to differ in the degree of concern about the damages. We show that stable coalitions are mostly formed by the countries with higher threshold concerns. When enough countries exhibit standard preferences, the coalition size may diminish, regardless of the degree of concern by the others.

Influence of Tape's Critical Currents and Current Distributions on AC Loss Measurement in a Multi-tape Conductor (임계전류 및 전류분포가 다중테이프 초전도도체의 교류손실 측정에 미치는 영향)

  • Ryu Kyung Woo;Ma Y. H.;Choi Byoung Ju;Hwang S. D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2005
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables, which consist of a number of lli 2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. In this work we have prepared a multi-tape conductor composed of Bi-2223 tapes. The at losses of the conductor have experimentally investigated. The loss tests indicate that the effect of tapes critical currents on AC loss measurement in the multi tape conductor is negligible only if currents in the tapes flow uniformly Moreover, the measured tosses of the conductor are in good agreement with the sum of the transport losses in the tapes. However, in the case of non-uniform current distributions, the measured AC losses considerably depend on the current distribution parameter of the positioning of a voltage lead. Thus special cautions should be needed for the measurement of the true AC losses in the short power cable samples.

소형 펀치시험에 의한 강용접부의 파괴강도 평가에 관한 연구 2

  • 류대영;송기홍;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.56-67
    • /
    • 1989
  • In this study, the possibility of evaluating the peculiar fracture strength of weldment in high strength steels was investigated by means of a small punch(SP) test. In order to obtain the ductile-brittle transition temperature(DBTT) of SP energy by which the fracture strength of weldment in structural steels such as SS41 and SM53B steels had been evaluated in our preceding publication, the effects of notches and loading rates on SP energy were discussed. It was found that the correspondence of SP energy to critical COD at test temperature -196.deg. C showed a linear relation with some deviation. The empirical correlation with scatter band, Esp/(Esp)p = 1.67[.delta./(.delta./sub c//(.delta./sub c/)/sub p/]-0.55, was developed between the SP energy ratio and critical COD ratio of each weld structure compared with parent material at test temperature -196.deg. C. In addition, there did not appear to be a significant effect of test materials and specimen size etc. on the correlation.

  • PDF

Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.205-214
    • /
    • 2018
  • In this paper, the thermo-mechanical buckling characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal governing equations are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate critical buckling temperature results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as material distribution profile, small scale effects and aspect ratio on the critical buckling temperature of the FG nanobeams in detail. It is explicitly shown that the thermal buckling of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.