DOI QR코드

DOI QR Code

Effect of Initial Particle Size Distribution of (K0.5Na0.5)NbO3 Powders on Microstructure of Their Sintered Ceramics

(K0.5Na0.5)NbO3 세라믹스의 초기 분말 입도 분포가 소결체의 미세구조에 미치는 영향

  • Yoo, Il-Ryeol (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Choi, Seong-Hui (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Kyung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 유일열 (금오공과대학교 신소재공학부) ;
  • 최성희 (금오공과대학교 신소재공학부) ;
  • 조경훈 (금오공과대학교 신소재공학부)
  • Received : 2022.03.03
  • Accepted : 2022.03.21
  • Published : 2022.03.30

Abstract

In this study, the effect of the initial particle size distribution (PSD) of (K0.5Na0.5)NbO3 powders on the microstructure of sintered ceramics was investigated. (K0.5Na0.5)NbO3 powders with uni-, bi-, tri-, and quad-modal PSDs were obtained through a planetary ball-mill. For the specimens sintered at 1080℃, the growth of abnormal grains was promoted from the powders exhibiting quad- and tri-modal PSDs with a high content of large particles, resulting in a microstructure in which huge abnormal grains were predominant. However, as the number of peaks in PSD and the overall particle size decreased, the abnormal grain growth was suppressed and the grain growth of small particles started, resulting in a microstructure with a uniform grain size. For the specimens sintered at 1100℃, huge abnormal grains were not observed due to the decrease in the critical driving force for 2D nucleation even when powders with quad- and tri-modal PSDs were used. It was confirmed that when powder with unimodal PSD was used, a uniform microstructure that was not significantly affected by the sintering temperature could be obtained. The results of this study demonstrate that the microstructure of (K0.5Na0.5)NbO3-based ceramics can be controlled by controlling the particle size of the initial powder.

Keywords

Acknowledgement

이 연구는 금오공과대학교 학술연구비로 지원되었음(2019104018).

References

  1. D. Damjanovics : Rep. Prog. Phys., 61 (1998) 1267-1324. https://doi.org/10.1088/0034-4885/61/9/002
  2. R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, and G. Shirane : Phys. Rev. Lett., 84 (2000) 5423-5426. https://doi.org/10.1103/PhysRevLett.84.5423
  3. L. Bellaiche, A. Garcia, and D. Vanderbilt : Phys. Rev. Lett., 84 (2000) 5427-5430. https://doi.org/10.1103/PhysRevLett.84.5427
  4. K. H. Cho, H. Y. Park, J. S. Heo, and S. Priya : J. Appl. Phys., 115 (2014) 204108. https://doi.org/10.1063/1.4879876
  5. V. Annapureddy, M. S. Kim, H. Palneedi, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong, and J. Ryu : Adv. Energy Mater., 6 (2016) 1601244. https://doi.org/10.1002/aenm.201601244
  6. EU-Directive 2002/95/EC: Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), Off. J. Eur. Union 2003, 46 (L37) 19.
  7. C. Hicks, R. Dietmar, and M. Eugster : Environ. Impact Assess., 25 (2005) 459-471. https://doi.org/10.1016/j.eiar.2005.04.007
  8. X. Lv, J. Zhu, D. Xiao, X. Zhang, and J. Wu : Chem. Soc. Rev., 49 (2020) 671-707. https://doi.org/10.1039/c9cs00432g
  9. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, and S. J. Pennycook : J. Am. Chem. Soc., 141 (2019) 13987-13994. https://doi.org/10.1021/jacs.9b07188
  10. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, and J. Zhu : Adv. Mater., 28 (2016) 8519-8523. https://doi.org/10.1002/adma.201601859
  11. T. Zheng, J. Wu, D. Xiao, and J. Zhu : Scr. Mater., 94 (2015) 25-27. https://doi.org/10.1016/j.scriptamat.2014.09.008
  12. H. -Y. Park, C. -W. Ahn, H. -C. Song, J. -H. Lee, K. Uchino, H. -Gyu Lee, H. -J. Lee, and S. Nahm : Appl. Phys. Lett., 89 (2006) 062906. https://doi.org/10.1063/1.2335816
  13. S. -G. Bae, H. -G. Shin, K. -H. Chung, J. -H. Yoo, and I. -H. Im : Trans. Electr. Electron. Mater., 16 (2015) 179. https://doi.org/10.4313/TEEM.2015.16.4.179
  14. H. -C. Thong, Z. Xu, C. Zhao, L. -Y. Lou, S. Chen, S. -Q. Zuo, J. -F. Li, and K. Wang : J. Am. Ceram. Soc., 102 (2019) 836-844.
  15. P. Kabakov, C. Dean, V. Kurusingal, Z. Cheng, H. -Y. Lee, and S. Zhang : J. Mater. Chem., C, 8 (2020) 7606-7649. https://doi.org/10.1039/D0TC01220C
  16. J. G. Fisher and S.-J. L. Kang : J. Eur. Ceram. Soc., 29 (2009) 2581-2588. https://doi.org/10.1016/j.jeurceramsoc.2009.02.006
  17. T. Rojac, M. Kosec, B. Malic, and J. Holc : J. Eur. Ceram. Soc., 26 (2006) 3711-3716. https://doi.org/10.1016/j.jeurceramsoc.2005.11.013
  18. M. Magini, A. Iasonna, and F. Padella : Scr. Mater., 34 (1996) 13-19. https://doi.org/10.1016/1359-6462(95)00465-3