• 제목/요약/키워드: Critical shear stress

검색결과 304건 처리시간 0.023초

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

수심적분 2차원 유사이동모형에 관계된 인자들의 민감도분석에 관한 연구 (Sensitivity Analysis of Parameters in a Depth Averaged Two-Dimensional Sediment Transport Model)

  • 서상원;윤병만
    • 한국수자원학회논문집
    • /
    • 제31권1호
    • /
    • pp.115-120
    • /
    • 1998
  • 본 논문에서는 수심적분 2차원 모형을 하나 소개하고, 이 모형이 가질 수 있는 오차의 한계를 민감도분석을 통해 제시하였다. 민감도 분석 결과, Manning 조도계수, 혼합계수, 침강속도, 한계전단력 등이 부유사농도에 대해 모형에 미치는 영향은 매우 크게 나타났으며, 조위와 확산계수의 영향은 거의 없는 것으로 나타났다.

  • PDF

하수관거의 최저유속 (Minimum Velocity of Sewerage Pipes)

  • 유동훈;이정영
    • 한국수자원학회논문집
    • /
    • 제32권4호
    • /
    • pp.469-478
    • /
    • 1999
  • 한수관내 침전물의 퇴적을 방지하기 위하여는 최저유속과 에너지경사, 관경을 산정하여 제시하여야 되는데 이들 수치를 바로 결정하는 양해법 산정식들을 개발하였다. 이를 위하여 토사의 임계전단력과 상용관 마찰계수 산정을 위하여 지수형 산정식들을 도입하였으며, 이들 지수형 산정식들은 기존 실험관측자료를 이용하여 개발되었다. 제시된 수치들의 적합성을 판별하기 위하여 여러 예들을 본 연구에서 개발된 산정식들을 적용하여 검토하였다.

  • PDF

충전된 절리면의 전단특성에 관한 기초연구 (Basic Study on Shear Characteristics of Filled Rock Joint)

  • 김용준;이영휘;도성규
    • 터널과지하공간
    • /
    • 제14권5호
    • /
    • pp.318-326
    • /
    • 2004
  • 본 연구에서는 다양한 경계조건에서 충전물을 포함한 절리면의 역학적 특성을 규명할 수 있는 절리면 전단시험 장비를 개발하였다. 그리고 개발된 시험장비를 이용하여 돌출부 경사, 수직응력, 충전물 종류 및 두께변화에 따른 전단시험을 수행하고 충전된 절리면의 전단특성을 고찰하였다. 일정수직응력 조건에서 충전물 종류 및 두께, 돌출부 경사, 수직응력 등을 변화하여 실험을 수행한 바에 의하면 충전된 절리면의 거동과 강도특성은 절리면의 거칠기, 충전물 두께와 종류에 따라 영향을 받는 것으로 나타났으며, 충전물이 없는 절리면과 비교할 때 팽창각이 감소하여 거칠기 영향이 충전물에 의해 감소되는 것으로 나타났다. 그리고 한계두께비는 충전물 종류뿐만 아니라 응력수준, 거칠기에 따라서도 다른 것으로 나타났다.

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Yazhi;Zhu, Dongping;Lu, Lu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1784-1800
    • /
    • 2018
  • Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading

  • Long, Xu;Lee, Chi King
    • Computers and Concrete
    • /
    • 제15권5호
    • /
    • pp.807-831
    • /
    • 2015
  • In the previous analytical studies on 2D reinforced concrete (RC) beam-column joints, the modified compression field theory (MCFT) and the strut-and-tie method (STM) are usually employed. In this paper, the limitations of these analytical models for RC joint applications are reviewed. Essentially for predictions of RC joint shear behaviour, the MCFT is not applicable, while the STM can only predict the ultimate shear strength. To eliminate these limitations, an improved STM is derived and applied to some commonly encountered 2D joints, viz., interior and exterior joints, subjected to monotonic loading. Compared with the other STMs, the most attracting novelty of the proposed improved STM is that all critical stages of the shear stress-strain relationships for RC joints can be predicted, which cover the stages characterized by concrete cracking, transverse reinforcement yielding and concrete strut crushing. For validation and demonstration of superiority, the shear stress-strain relationships of interior and exterior RC beam-column joints from published experimental studies are employed and compared with the predictions by the proposed improved STM and other widely-used analytical models, such as the MCFT and STM.

저소성 실트의 비배수 전단거동 특성과 예측 (The Characteristic for Undrainded Shear Behavior of in Low-Plastic Silt and its Prediction)

  • 김대만
    • 한국지반환경공학회 논문집
    • /
    • 제9권6호
    • /
    • pp.61-70
    • /
    • 2008
  • 본 연구는 저소성 실트의 비배수 전단거동특성을 파악하기 위해서 낙동강 중류에서 채취한 저소성 실트를 이용하여 비배수 삼축압축시험을 수행하였다. 시험 결과 축차응력은 항복응력에 도달한 후 사질토의 거동인 경화현상이 나타났으며, 간극수압은 최대값 이후 감소하여 한계상태에 도달하였다. 유효응력경로에서는 압밀응력이나 과압밀비에 상관없이 사질토와 같이 한계상태선(CSL)과 상태전이선(PTL)이 존재하였다. 저소성 실트 거동에 대해 Modified Cam-Clay(MCC) 모델과 동적인공신경망 모델인 Jordan과 Elman-Jordan 모델을 적용하여 예측을 실시하였다. 예측결과, MCC model은 저소성 실트의 전반적인 거동을 예측할 수 없었으나, Jordan과 Elman-Jordan 모델은 모두 저소성 실트의 거동을 비교적 잘 예측하였다.

  • PDF

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

Seismic behavior of RC building by considering a model for shear wall-floor slab connections

  • Soleimani-Abiat, Mehdi;Banan, Mohammad-Reza
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.381-397
    • /
    • 2015
  • Connections are the most important regions in a structural system especially for buildings in seismic zones. In R.C. structures due to large dimensions of members and lack of cognition of the stress distribution in a connection, reaching a comprehensive understanding of the connection behaviors becomes more complicated. The shear wall-to-floor slab connections in lateral load resisting systems have a potential weakness in transferring loads from slabs to shear walls which might change the path of load transformation to shear walls. This paper tries to investigate the effects of seismic load combinations on the behavior of slabs at their connection zones with the shear walls. These connection zones naturally are the most critical regions of the slabs in RC buildings. The investigation carried on in a simulated environment by considering three different structures with different shear wall layout. The final results of our study reveal that layout of shear walls in a building significantly affects the magnification of forces developed at the shear wall-floor slab connections.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF