• 제목/요약/키워드: Critical rotational speed

검색결과 84건 처리시간 0.023초

발전기 양극 회전자 밸런싱에서의 이상 진동신호 분석 (Investigation on Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing)

  • 박종포;최성필;주영호
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.835-840
    • /
    • 1999
  • Cause of excessive vibration signals with twice the rotational speed of a 2-pole generator rotor in balancing for fossil power plants was investigated. The 2-pole generator rotor is treated as a typically asymmetric rotor in vibration analysis, and produces asynchronous vibration with twice the rotational speed for its own inertia and stiffness asymmetry. This paper introduces practical balancing procedure and experimental vibration data of the asymmetric 2-pole rotor in balancing, and presents the results of investigation into sources of the excessive vibration signals.

  • PDF

Study on the Vibration Characteristics of Yaw Gear System for Large-Capacity Offshore Wind Turbine

  • HyoungWoo Lee;SeoWon Jang;Seok-Hwan Ahn
    • 한국해양공학회지
    • /
    • 제37권4호
    • /
    • pp.164-171
    • /
    • 2023
  • Vibration and noise must be considered to maximize the efficiency of a yaw system and reduce the fatigue load acting on a wind turbine. This study investigated a method for analyzing yaw-system vibration based on the change in the load-duration distribution (LDD). A substructure synthesis method was combined with a planetary gear train rotational vibration model and finite element models of the housing and carriers. For the vibration excitation sources, the mass imbalance, gear mesh frequency, and bearing defect frequency were considered, and a critical speed analysis was performed. The analysis results showed that the critical speed did not occur within the operating speed range, but a defect occurred in the bearing of the first-stage planetary gear system. It was found that the bearing stiffness and first natural frequency increased with the LDD load. In addition, no vibration occurred in the operating speed range under any of the LDD loads. Because the rolling bearing stiffness changed with the LDD, it was necessary to consider the LDD when analyzing the wind turbine vibration.

안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적 연구 (Experimental Study on the Helical Flow Field in a Concentric Annulus with Rotating Inner Cylinders)

  • 황영규;김영주
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.822-833
    • /
    • 2000
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow has been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

토크 하중의 변동이 회전원판의 안정성에 미치는 영향 (Influence of Torque Fluctuation on the Stability of a Rotating Disk)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.110-116
    • /
    • 2015
  • This study investigates the whirling stability of a rotating shaft-disk system under parametric excitation using periodically varying torque. The equations of motion were derived using a lumped-mass model, and the Floquet method was employed to find the effects of torque fluctuation, internal and external damping, and rotational speed on whirling stability. Results indicated that the effect of torque fluctuation was considerable on the instability around resonance, but minimal on supercritical instability. Stability diagrams were sensitive to the parametric excitation frequency; critical torque decreased upon increasing excitation frequency, with faster response convergence or divergence. In addition, internal and external damping had a considerable effect on unstable regions, and reduced the effects of the parametric excitation frequency on critical torque and speed. Results obtained from the Floquet approach were in good agreement with those obtained by numerical integration, except for some cases with Floquet multipliers very close to unity.

Experimental Study on the Performance of a Turbopump Inducer

  • Hong, Soon-Sam;Kim, Jin-Sun;Park, Chang-Ho;Kim, Jinhan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.240-244
    • /
    • 2004
  • Characteristics of steady and unsteady cavitation in a turbopump inducer were investigated in this paper. To see the effect of tip clearance on the inducer performance, three cases of tip clearance were tested. The helical inducer, which has two blades with inlet tip blade angle of 7.8 degree and tip solidity of 2.7, was tested in the water. In the non-cavitating condition, the inducer head decreased with increase in the tip clearance. Rotating cavitation and cavitation surge were observed through unsteady pressure measurements at the inducer inlet. The cell number and propagation speed of the rotating cavitation were determined through cross-correlation analysis. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer rotation and the cavitation surge did not rotate. The critical cavitation number increased with increase in the tip clearance at the same flow rate, but the change of critical cavitation number was small at the nominal flow rate.

  • PDF

회전 외팔보의 굽힘 진동해석 (Bending Vibration of Rotating Cantilever Beams)

  • 유홍희
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.891-898
    • /
    • 1992
  • 본 연구에서는 기존의 방식들의 단점들을 극복할 수 있고 회전하는 외팔보의 굽힘 진동 특성을 효과적으로 정확하게 예측할 수 있는 일관성 있고 간명한 방법을 제 시하는 것을 목적으로 한다. 참고문헌(9-11)에서는 회전하는 외팔보의 선형 운동방정 식을 복합 변형변수를 이용하여 구하고 있는데 이러한 동적모데링은 참고문헌(4-8)에 서와 같은 불필요한 원심력의 내재적 대입과정을 통한 2단계 운동 방정식 유도를 피할 수 있어 과정의 일관성과 간명성을 제공할 수 있음을 보였다. 본 연구에서는 이들 연구 결과에 근거하여 진동해석을 위한 방법을 제공하고 결과를 도출 분석 비교하는 것을 그 내용으로 한다.

4자유도 고속 병렬 로봇의 해석 및 설계 (Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.

플라이휠 시스템의 에너지 저장/발생시 동역학적 안전성연구 (A Study on the Stability of the Flywheel System During the Storage and Generation of Energy)

  • 장웅재;이수훈
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.151-156
    • /
    • 2000
  • A vibration in a high-speed machine may lead to machinery malfunction and even catastrophic failure. So solving the vibration problem is a fundamental requirement for the stability of the high-speed machine. The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical by generator when necessary. The high-speed rotating flywheel has large amplitude at a critical speed. And it has an unstable behavior by the electric torque at the first stage of the energy generation. In this paper, the stability analysis is performed with an analytical model and equations of motion-which is considered the effect of the electric torque-to identify the stable driving condition and the dynamic behavior.

  • PDF

균열회전체의 고조파진동 해석 (Analysis of Harmonic Vibration of Cracked Rotor)

  • 전오성
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.35-46
    • /
    • 2008
  • Harmonic vibration characteristics for the general rotor model having a breathing crack are analyzed. Analyses are performed at the half critical speed ranges. The vibration characteristics are explained by using the additional slope and bending moment at the crack position and the influence coefficient showing the structural dynamic characteristics of the rotor. With the low crack depth the magnitude of the additional slope is kept constant even at the speed range at which the orbit magnitude is very sensitive to the rotational speed change. At this speed range the vibration is affected by the influence coefficient only. As the dynamic bending moment exceeds the static bending moment with the increase of crack depth. the additional slope affects the vibration amplitude of cracked rotor and the crack propagation rate increases.

터보펌프용 연료펌프의 성능 시험 (Performance Tests of the Fuel Pump for a Turbopump)

  • 김대진;홍순삼;최창호;김진한
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.655-659
    • /
    • 2004
  • Performance tests of the fuel pump for a turbopump unit have been successfully carried out in water environment. The tests are performed to evaluate the hydraulic and cavitation performances. The head and volute pressure distribution of the fuel pump followed the conventional similarity rule - unlike this, the secondary passage pressure distribution showed a small deviation from the conventional similarity rule. Also, critical cavitation number decreased as the rotational speed of the pump increased.

  • PDF