• Title/Summary/Keyword: Critical ratio

Search Result 2,015, Processing Time 0.025 seconds

The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle (디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향)

  • Kim Jae Hyung;Kim Heuy Dong;Park Kyung Am
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

Variation of State Boundary Surface of Remolded Weathered Mudstone soil by spacing ratio (공간비에 의한 재성형 이암 풍화토의 상태경계면 변화)

  • Kim, Ki-Young;Jeon, Je-Sung;Lee, Jong-Wook;Kim, Je-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1095-1099
    • /
    • 2008
  • Critical state theory involves two state boundary surface. One is Roscoe surface and the other is Hvorslev surface. The shape of these boundary surface was changed because of several parameters : Critical state constant(M), spacing ratio (r) and critical state pore pressure coefficient($\wedge$). As these constants make difference to each model and the way of solution, they may affect the shape of state boundary surface. Specially, spacing ratio (r) is important. On this study, triaxial compression test was performed using remolded weathered mudstone soil and investigated variation of state boundary surface because of spacing ratio. In the results of prediction, critical state point was located highly and the shape of boundary surface was changed more tightly curve as decreasing spacing ratio.

  • PDF

Evaluation of Critical Pressure Ratios Sonic Nozzle at Low Reynolds Numbers (음속 노즐의 임계 압력비에 대한 저 레이놀즈수의 영향)

  • Choe, Yong-Mun;Park, Gyeong-Am;Cha, Ji-Seon;Choe, Hae-Man;Yun, Bok-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1535-1539
    • /
    • 2000
  • A sonic nozzle is used as a reference flow meter in the area of gas flow rate measurement. The critical pressure ratio of sonic nozzle is an important factor in maintaining its operating condition. ISO9300 suggested the critical pressure ratio of sonic nozzle as a function of area ratio. In this study, 13 sonic nozzles were made by the design of ISC9300 with different half diffuser angles of 2。 to 8。 and throat diameters of 0.28 to 4.48 mm. The test results of half diffuser angles below 8。 ar quite similar to those of ISO9300. On the other hand, the critical pressure ratio for the nozzle of 8。 decreases by 5.5% in comparison with ISO9300. However, ISO9300 does not predict the critical pressure ratio at lower Reynolds numbers than 10(sup)5. Therefore, it is found that it is a better way for the flow of low Reynolds number to express the critical pressure ratio of sonic nozzle as a function of Reynolds number than area ratios. A correlation equation of critical pressure is introduced with uncertainty $\pm$3.2 % at 95% confidence level.

Effect of Control Valve Flow Rates Characteristics on the Performance of an Air Spring (제어밸브의 유량특성에 따른 에어스프링의 성능 변화)

  • Han, Seung Hun;Jang, Ji Seong;Ji, Sang Won
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.8-14
    • /
    • 2016
  • This study describes the effect of the critical pressure ratio of a control valve on the performance of an air spring system composed of an air spring, auxiliary chamber, control valve and mass in order to suggest a more efficient design for an air spring system. The critical pressure ratio of the control valve is assumed to have a fixed value, but the critical pressure ratio of the control valve is known to have various values between 0.05 and 0.6, and the effect of the variation of the critical pressure ratio on the performance of the air spring system has not yet been reported. The analysis derives nonlinear and linear governing equations of the air spring system, including the critical pressure ratio of the control valve. This simulation study is presented to show that the impedance and transmissibility characteristics of the air spring system change due to variations in the critical pressure ratio of the control valve as well as its sonic conductance. As a result, the critical pressure ratio of the control valve should be maintained as large as possible to improve the vibration isolation characteristics of the air spring system.

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet ( I )

  • No, S.Y.;Ryu, K.Y.;Rhim, J.H.;Lim, S.B.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 1999
  • The first maximum point in the stability curve of liquid jet, i.e., the critical point is associated with the critical Reynolds number. This critical Reynolds number should be predicted by simple means. In this work, the critical Reynolds number in the stability curve of liquid jet are predicted using the empirical correlations and the experimental data reported in the literatures. The critical Reynolds number was found to be a function of the Ohnesorge number, nozzle lengh-to-diameter ratio, ambient Weber number and nozzle inlet type. An empirical correlation for the critical Reynolds number as a function of the Ohnesorge number and nozzle length-to-diameter ratio is newly proposed here. Although an empirical correlation proposed in this work may not be universal because of excluding the effects of ambient pressure and nozzle inlet type, it has reasonably agrees with the measured critical Reynolds number.

  • PDF

An extremum method for bending-wrinkling predictions of inflated conical cantilever beam

  • Wang, Changguo;Du, Zhenyong;Tan, Huifeng
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.39-51
    • /
    • 2013
  • An extremum method is presented to predict the wrinkling characteristics of the inflated cone in bending. The wrinkling factor is firstly defined so as to obtain the wrinkling condition. The initial wrinkling location is then determined by searching the maximum of the wrinkling factor. The critical wrinkling load is finally obtained by determining the ratio of the wrinkling moment versus the initial wrinkling location. The extremum method is proposed based on the assumption of membrane material of beam wall, and it is extended to consider beam wall with thin-shell material in the end. The nondimensional analyses show that the initial wrinkling location is closely related to the taper ratio. When the taper ratio is higher than the critical value, the initial wrinkles will be initiated at a different location. The nondimensional critical wrinkling load nonlinearly increases as the taper ratio increases firstly, and then linearly increases after the critical taper ratio. The critical taper ratio reflects the highest load-carrying efficiency of the inflated cone in bending, and it can be regarded as a measure to optimize the geometry of the inflated cone. The comparative analysis shows fairly good agreement between analytical and numerical results. Over the whole range of the comparison, the mean differences are lower than 3%. This gives confidence to use extremum method for bending-wrinkling analysis of inflated conical cantilever beam.

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet (II)

  • Lim, S.B.;So, J.D.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1999
  • The prediction of the critical Reynolds number in the stability curie of liquid jet was mainly analyzed by the empirical correlations and the experimental data through the literature. The factors affecting the critical Reynolds number include Ohnesorge number, nozzle length-diameter ratio, ambient pressure and nozzle inlet type. The nozzle inlet type was divided into two groups according to the dependence of the critical Reynolds number on the length-to-diameter ratio of nozzle. The empirical correlations for the critical Reynolds number as a function of above factors mentioned are newly proposed.

  • PDF

Amplitude Dependency of Damping in Buildings and Critical Tip Drift Ratio

  • Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • The importance of appropriate use of damping evaluation techniques and points to note for accurate evaluation of damping are first discussed. Then, the variation of damping ratio with amplitude is discussed, especially in the amplitude range relevant to wind-resistant design of buildings, i.e. within the elastic limit. The general belief is that damping increases with amplitude, but it is emphasized that there is no evidence of increasing damping ratio in the very high amplitude range within the elastic limit of main frames, unless there is damage to secondary members or architectural finishings. The damping ratio rather decreases with amplitude from a certain tip drift ratio defined as "critical tip drift ratio," after all friction surfaces between primary/structural and secondary/non-structural members have been mobilized.

Effect of Processing Factors on Critical Current Density in Bi2212/Ag Wires

  • Kim, Sang-Cheol;Ha, Dong-Woo;Oh, Sang-Soo;Han, Il-Yong;Ha, Hong-Soo;Sohn, Ho-Sang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1243-1244
    • /
    • 2006
  • Five kinds of double stacked 385 (55 x7) filamentary Bi2212/Ag round wires and 55 filamentary tapes with different Ag ratios (silver area/superconductor area) have been fabricated via PIT method, and the effects of Ag ratio and processing factors on critical current density were studied. The effects of the maximum temperature and average filament diameter on critical current density were also studied. The wire of 0.74 mm diameter having Ag ratio 3.7 showed critical current density of $2,218\;A/mm^2$ at 4.2 K, 0 T.

  • PDF

The Influence of K-ratio and Seepage Velocity on Piping Occurrence (Piping현상 발생에 미치는 투수계수비와 침투유속의 영향에 대한 연구)

  • Huh, Kyung-Han;Chang, Ock-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • In case of judging the stability of dike or dam structures which need hydraulic interception, the first thing to do is to examine whether a piping phenomenon occurred or not. Generally, dike or dam structures are constructed while layer compacting is executed, so permeability is likely to be anisotropic- different from each other in hydraulic conductivity in the horizontal direction [$k_x$] and hydraulic conductivity in the vertical direction[$k_y$]. This study looked into exit hydraulic gradient and Seepage velocity by conducting an Seepage analysis subsequent to various hydraulic conductivity ratios[k-ratio = ky / kx] and examined the influence on piping by comparing & examining critical Seepage Velocity based on critical hydraulic gradient in theoretical equation and critical Seepage Velocity in empirical equation. As the research result, it was found that hydraulic conductivity ratio operates as a very important factor in case the stability against piping occurrence is considered with the concept of critical hydraulic gradient, but relatively the hydraulic conductivity ratio is very low in its importance in relation to the concept of critical Seepage Velocity.