• Title/Summary/Keyword: Critical length

Search Result 1,158, Processing Time 0.036 seconds

Correlation Analysis of Watershed Characteristics and the Critical Duration of Design Rainfall (설계강우의 임계지속기간과 유역특성인자의 상관성 분석)

  • Lee, Jung-Sik;Sin, Chang-Dong;Lee, Bong-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.711-714
    • /
    • 2008
  • The objective of this study is to analyze the relationship between the watershed characteristics and the critical duration of design rainfall. For estimation of critical duration, adjustment Huff's method and ILLUDAS urban runoff model were applied to urban 21 areas. Watershed characteristics such as area, channel length, channel slope, shape factor, and pipe density were used to simulate correlation analysis. The conclusions of this study are as follows; it is revealed that critical duration is influenced by the watershed characteristics such as pipe density, area and channel length. Also, multiple regression analysis using watershed characteristics is carried out and the determination coefficient of multiple regression equation shows 0.972.

  • PDF

Bonding between high strength rebar and reactive powder concrete

  • Deng, Zong-Cai;Jumbe, R. Daud;Yuan, Chang-Xing
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • A central pullout test was conducted to investigate the bonding properties between high strength rebar and reactive powder concrete (RPC), which covered ultimate pullout load, ultimate bonding stress, free end initial slip, free end slip at peak load, and load-slip curve characteristics. The effects of varying rebar buried length, thickness of protective layer and diameter of rebars on the bonding properties were studied, and how to determine the minimum thickness of protective layer and critical anchorage length was suggested according the test results. The results prove that: 1) Ultimate pull out load and free end initial slip load increases with increase in buried length, while ultimate bonding stress and slip corresponding to the peak load reduces. When buried length is increased from 3d to 4d(d is the diameter of rebar), after peak load, the load-slip curve descending segment declines faster, but later the load rises again exceeding the first peak load. When buried length reaches 5d, rebar pull fracture occurs. 2) As thickness of protective layer increases, the ultimate pull out load, ultimate bond stress, free end initial slip load and the slip corresponding to the peak load increase, and the descending section of the curve becomes gentle. The recommended minimum thickness of protective layer for plate type members should be the greater value between d and 10 mm, and for beams or columns the greater value between d and 15 mm. 3) Increasing the diameter of HRB500 rebars leads to a gentle slope in the descending segment of the pullout curve. 4) The bonding properties between high strength steel HRB500 and RPC is very good. The suggested buried length for test determining bonding strength between high strength rebars and RPC is 4d and a formula to calculate the critical anchorage length is established. The relationships between ultimate bonding stress and thickness of protective layer or the buried length was obtained.

A new nonlocal HSDT for analysis of stability of single layer graphene sheet

  • Bouadi, Abed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2018
  • A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates undetermined integral terms and contains only two variables. The length scale parameter is considered in the present formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, thickness of the graphene sheets and shear deformation on the critical buckling force have been examined.

Computation of Critical Length for Vertical Grounding Electrode and Counterpoise (수직접지전극의 임계길이 산정)

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Li, Feng;Lee, Seung-Ju;Kim, Jong-Ho;Lee, Gang-Su;Kim, Ki-Bok;Kim, Tae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1491_1492
    • /
    • 2009
  • The impedance of a vertical grounding electrode is not lowered by expanding the dimension of the grounding electrode, and the length of thr vertical grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical length. In this paper, the critical lengths for the vertical grounding electrodes are calculated by using the distributed parameter circuit model. The adequacy of the simulations has been confirmed by comparing the simulated results with the measured results.

  • PDF

Elastic Critical Load and Effective Length Factors of Continuous Compression Member by Beam Analogy Method

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • The critical load of a continuous compression member was determined by the beam-analogy method. The proposed method utilizes the stress-analysis results of the analogous continuous beam, where imaginary concentrated lateral load changing its direction is applied at each midspan. The proposed method gives a lower bound error of critical load and can predict the span that buckles first. The effective length factors for braced frame columns can be easily determined by the present method, but result in the upper bound errors in all cases, which can lead to a conservative structural design.

  • PDF

Basic study on the EGD Generator of Small Capacity for the Wind Power (풍력을 위한 소용량 EGD 발전기에 관한 기초적 연구)

  • Jhoun, Choon-Saing;Park, Ki-Nam;Lim, Eung-Choon
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.126-136
    • /
    • 1992
  • In this paper an EGD generator of small capacity with the operating gases of $O_2,\;N_2$ and air is made and the electric characteristics in relation to energy conversion range length, corona current and gas pressure are investigated. The results are as follows: 1. There is a critical value in conversion range length for maximum open voltage and the critical value increases with fluid velocity. 2. The open voltage increases approximately linearly with corona current. 3. There is a critical value in the gas pressure for maximum open voltage and this pressure of gas decreases with fluid velocity in constant conversion range length.

  • PDF

Stability analysis of an uncooled segment of superconductor

  • Seol, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.8-12
    • /
    • 2017
  • If the part of the HTS magnet is exposed to the outside of the cryogenic coolant due to the fluctuation of the height of the cooling liquid or the vapor generation, the uncooled part becomes very unstable. In this paper, the unstable equilibrium temperature distribution of the uncooled part of a superconductor is obtained, and the maximum temperature and energy are calculated as a function of the uncooled length. Similar to the superconductor stability problem, the current sharing model was applied to derive the theoretical formula and calculated by numerical integration. We also applied a jump model, which assumes that joule heat is generated in all of the uncooled segment, and compares it with the current sharing model results. As a result of the analysis, the stable equilibrium state and the critical uncooled length in the jump model are not shown in the current sharing model. The stability of the conductors to external disturbances was discussed based on the obtained temperature distribution, maximum temperature, and energy.

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

Fabrication of 100m Class Bi-2223 High Temperature Superconductir (100m급 Bi-2223 고온초전도 선재 제조)

  • 하홍수;오상수;하동우;장현만;이남진;이준석;정대영;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.10-13
    • /
    • 1999
  • For large scale applications of high temperature superconductor(HTS) such as transmission cables, motors and generators, long length of flexible HTS conductors is required. Currently, HTS tape that is capable of being fabricated in long length by industrial processes is the Bi-2223 HTS tape. In this study, we fabricated 19 filamentary Bi-2223($Bi_{1.8}$$Pb_{0.4}$$Sr_{2}$$Ca_{2}$$Cu_{3}$$O_{10+X}$) HTS tape with 100m length by PIT(Powder In Tube) process. Critical current(Ic) of this long length tape was measured 18.5 A at 77 K, self field and short sample Ic is 32.5 A at the same condition. Critical current of 100m length tape was decreased by about 1/3 compared to that of short tape. This was mainly resulted from the increase of non homogeneity in oxide layer.

  • PDF

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.