• Title/Summary/Keyword: Critical height

Search Result 448, Processing Time 0.026 seconds

The dynamic response of adjacent structures with the shallow foundation of different height and distance on liquefiable saturated sand

  • Jilei Hu;Luoyan Wang;Wenxiang Shen;Fengjun Wei;Rendong Guo;Jing Wang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.135-148
    • /
    • 2023
  • The structure-soil-structure interaction (SSSI) effect in adjacent structures may affect the liquefaction-induced damage of shallow foundation structures. The existing studies only analysed the independent effects on the structural dynamic response but ignored the coupling effect of height difference and distance of adjacent structures (F) on liquefied foundations on the dynamic response. Therefore, this paper adopts finite element and finite difference coupled dynamic analysis method to discuss the effect of the F on the seismic response of shallow foundation structures. The results show that the effect of the short structure on the acceleration response of the tall structure can be neglected as F increases when the height difference reaches 2 times the height of the short structure. The beneficial effect of SSSI on short structures is weakened under strong seismic excitations, and the effect of the increase of F on the settlement ratio gradually decreases, which causes a larger rotation hazard. When the distance is smaller than the foundation width, the short structure will exceed the rotation critical value and cause structural damage. When the distance is larger than the foundation width, the rotation angle is within the safe range (0.02 rad).

Level of perception related to changes in lower facial height (하안면 고경 변화의 인지도에 관한 연구)

  • Park, Seung-Hyun;Kim, Young-Jin;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.35 no.3 s.110
    • /
    • pp.174-181
    • /
    • 2005
  • Understanding the level of a person's perception of changes that have occurred on the face after orthodontic treatment is critical to the process of orthodontic diagnosis and treatment planning. The purpose of this study was to determine the level of perception of profile and frontal changes in lower facial height. Forty students attending art school participated in a study evaluating the level of a participant's perception of changes in the lower facial height. Participants compared computer-graphic frontal and profile photographs with balanced proportions and photograph simulations of 1, 2, 3, and 4mm changes in lower facial height from stomion to the chin. At least a 2 mm change in lower facial height for the profile view and 3mm in the frontal view was needed to be perceived after orthodontic treatment. The level of a person's perception of the change in lower facial height was more sensitive in the profile view than in the frontal view, and information about facial changes given prior to evaluation enhanced the level of perception.

Comparison of the Pushing Forces between Horizontal Handle and Vertical Handle According to the Handle Height and Distance (수직형 손잡이와 수평형 손잡이의 높이와 간격에 따른 미는 힘 비교)

  • Song, Young-Woong
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 2014
  • Manual materials handling tasks are the main risk factors for the work-related musculoskeletal disorders. Many assistant tools for manual materials handling are being used in various kind of industries. One of them is a 4-wheeled cart which is widely used in manufacturing factories, hospitals, etc. The major force required to control the 4-wheeled cart is pushing and pulling. There are two types of handles being used for the 4-wheeled cart : vertical type (two vertical handles), and horizontal type (one horizontal handle). This study tried to investigate the pushing forces and subjective discomforts (hand/writst, shoulder, low back, and overall) of the two handle types with different handle height and distance conditions. Twelve healthy male students (mean age = 23.4 years) participated in the experiment. The independent variables were handle angle (horizontal, vertical), handle height (low, medium, high), and handle distance (narrow, medium, wide). The full factorial design was used for the experiment and the maximum pushing forces were measured in 18 different conditions ($2{\times}3{\times}3$). Analysis of variance (ANOVA) procedure was conducted to test the effects of the independent variables on the pushing force and discomfort levels. Handle height and angle were found to be the critical design factors that affect the maximal pushing forces and subjective discomfort. In the middle height, subjects exerted higher pushing forces, and experience lower discomfort levels compared to the high, and low height. There was no statistical influence of the handle distance to the pushing forces and subjective discomfort levels. It was found out that the effects of the handle angle (horizontal and vertical) on both pushing force and subjective discomfort were statistically significant (p < 0.05). The vertical handle revealed higher pushing force and lower discomfort level than the horizontal handle. The reason for that was thought to be the different postures of the hand when grasping the handles. The horizontal handle induced pronaton of the hand and made hand posture more deviated from the neutral position.

Behaviors of Premixed Flames and Triple Flames with its Concentration Difference in a Slot Burner (슬롯버너에서 농도차이에 따른 예혼합화염과 삼지화염의 거동)

  • Kim, Tae-Kwon;Jang, Jun-Young;Park, Jeong;Jun, Seong-Hwa;Miwa, Kei
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.85-90
    • /
    • 2004
  • We have presented characteristics of a transitional behavior from a premixed flame to a triple flame in a lifted flame according to the change of equivalence ratio. The experimental apparatus consisted of a slot burner and a contraction nozzle for a lifted flame. As concentration difference of the both side of slot burner increases, the shape of flame changed from a premixed flame to a triple flame, and the liftoff height is decreased to the minimum value and then increase again. Around this minimum point, it is confirmed a transition regime from premixed flame to triple flame. Consequently, the experimental results of the liftoff height, flame curvature and luminescence intensity showed that the stabilized laminar lifted flame regime is categorized by regimes of premixed flame, triple flame and critical flame. In the visualization experiment of smoke wire, the flow divergence and redirection reappeared in premixed flame as well as triple flame. Thus we cannot express the flame front of lifted flame has a behavior of triple flame with only flow divergence and redirection. To differentiate triple flame and premixed flame, ${\Phi}$ value of partially premixed fraction is employed. The partially premixed fraction ${\Phi}$ was constant in premixed flame. In critical flame small gradient appears over the whole regime. In triple flame, typical diffusion flame shape is obtained as parabolic distribution type due to diffusion flame trailing.

  • PDF

Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval (필터간격을 고려한 농업용저수지 제체의 침투특성)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.

The Stability Evaluation of River Embankment for a Piping Phenomenon (하천제방의 세굴에 대한 안정성 연구)

  • Lee, Song;Park, Hyung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2003
  • In this reseach, a seepage test is carried out for three kinds of soil using a upward seepage equipment. Reliability about the existing method of pipining investigation were verified making an estimate of the critical velocity, the critical hydraulic gradient, and hydraulic conductivity and so on. Also, sensitive analyses were carried out using Plaxis that is FEM Program about design factors of scour. The height of core had a big infulence on the hydraulic gradient of the embankment's lower part in the result of sensitive anaylsis. Also, second only to the height of core, and the slope of embankment, the width of crest had influence on scour. However, the change of hydraulic gradient in the effluent gateway had a little influence on the crest width of core. Using these results of sensitive analysis on designing, hydraulic gradient in the effluence gateway turned out to be reducing by altering design factors that change of sensitiveness is big, in case of the hydraulic gradient bigger than the standard hydraulic gradient.

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.

Pullout Characteristics of Multi Helical Anchors in Clay (점성토 지반에서의 다중 헬리컬 앵커의 인발 특성)

  • 이준대;이봉직;이종규
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.114-121
    • /
    • 1997
  • Helical anchors are foundation structure that designed to resist uplift loads are installed by applying in load to shaft while rotating it into the ground. These can be a cost effective means of proving tension anchorage for foundation where soil conditions permit their installation because of ease of installation. At present time, tapered helical anchors are commonly used to carry uplift loads. The uplift capacity includes the following factors : the height of overburden above the top helix, the resistant along a cylinder, the weight of the soil in the cylinder and suction force. In order to make clear behavior characteristics of helical anchors with pullout, model tests were conducted with respect to various embedment depth, space of helix, shape of helix. Based on the experimental study, the following conclusions are drawn. 1) The uplift capacity of multi helical anchors increase with embedment ratio of anchors The increase is smooth after critical uplift capacity. 2) Critical breakout factors and critical embedment ratio of multi helical anchor exist 7∼8, 4∼6 respectively. 3) Variation of uplift capacity with helix spaces show down after S/D=5. 4) Critical breakout factors of helical anchor in the laboratory test are similar to Das's theory.

  • PDF

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.

Shallow Failure Characteristics of Weathered Granite Soil Slope in accordance with the Rainfall Infiltration (강우침투에 따른 화강풍화토 사면의 얕은파괴 특성)

  • Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2810-2818
    • /
    • 2009
  • In order to examine the characteristic of shallow failure in cut slopes composed of weathered granite soil, this study calculated critical permeability coefficient according to rainfall characteristic in Korea, performed stability analysis according to the representative physical properties of weathered granite soil distributed in Korea such as horizontal distance to the failure surface of cut slope, slope inclination, slope height, and the depth of wetting by rainfall, and analyzed the results. In the results of analyzing critical permeability coefficient, when the local rainfall characteristic was considered, the maximum critical permeability coefficient was $7.16{\times}10^{-4}cm/sec$. We judged that shallow failure according to wetting depth should be considered when rainfall below the critical rainfall intensity lasts longer than the minimum rainfall duration in cut slopes composed of weathered granite soil, which had a critical permeability coefficient lower than the maximum critical permeability coefficient. Furthermore, using simulated failure surface, this study could understand the characteristic of shallow failure in cut slopes based on the change in slope safety factor according to horizontal distance, wetting depth, and strength parameter.