• Title/Summary/Keyword: Critical height

Search Result 448, Processing Time 0.03 seconds

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach (성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.5-16
    • /
    • 2016
  • In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

Critical Shoulder Height of Raceway in Ball Bearing Considering Elastohydrodynamic Lubrication

  • Kim, Kyeongsoo;Kim, Taewan
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, the effects of Elasto-hydrodynamic lubrication pressure on the critical shoulder height of raceway in an angular contact ball bearing were investigated. Both 3D contact analyses using an influence function and the EHL analysis were conducted for the contact geometry between the ball and raceways. The pressure distributions by 3D contact analysis and EHL analysis for an example bearing were compared. The effect of ellipse truncation on the minimum film thickness also investigated from EHL analysis. The critical shoulder height in the dry contact and the EHL state were compared for various applied loads. It is shown that when the ellipse truncation occurs, the pressure spike for the EHL conjunction is higher than that for the dry contact, and its location moves more inward of the contact center. The steep pressure gradients would increase the flow rate, so in order to maintain flow continuity a significant reduction in film thickness and an abrupt rise in pressure occurs in the edge of shoulder. Significant reduction of the minimum film thickness occurs near the edge of shoulder. The critical shoulder heights in the EHL state are calculated as higher values compared with in the dry contact. This results shows that the determination of critical shoulder height by the EHL analysis is more proper.

Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing (볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계)

  • Choi, DongChul;Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.

Investigation of Critical Breaking Moment through Field Tree-Pulling Test (현장 인발시험을 통한 수목의 한계 전도모멘트 검토)

  • Im, Dongkyun;Kim, Won;Choi, Sung-Uk;Kim, Yongjeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.323-332
    • /
    • 2011
  • In order to properly manage trees in rivers, the impact of trees on flooding and their ecological characteristics need to be considered and a plan needs to be established. The hydraulic impact by trees is reduction of conveyance and hydraulic structure's function due to overturn arising from flow force. A field pulling test was carried out to measure the critical resistance force for when trees break in order to discover the level of resistance that trees inside the river have to external force. The relevant factors for discovering the critical breaking moment for trees include tree species, which determines the external characteristic of trees, tree diameter at breast height, and tree height. In this study, the correlation between critical breaking moment and diameter at breast height were used. The tree's limit or critical breaking moment was tested using 100 shrubs and tall trees with a breast height diameter of 4.9 to 32.8 cm. It was difficult to derive a correlation between diameter at breast height and critical breaking moment when shrubs and tall trees were being considered together, but when only tall trees were considered, a consistent correlation was found between them.

Estimation of Critical Height of Embankment to Mobilize Soil Arching in Pile-supported Embankment (말뚝지지성토지반 내 지반아칭이 발달할 수 있는 한계성토고의 평가)

  • Hong, Won-Pyo;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.89-98
    • /
    • 2010
  • A method to design a critical height of embankments is presented so as to mobilize fully soil arching in pile-supported embankments. The behavior of the load transfer of embankment weights on pile cap beams was investigated by a series of model tests performed on pile-supported embankments with relatively wide space between cap beams. The model tests explained that the behavior of the load transfer depended very much on the height of embankments, because soil arching could be mobilized in pile-supported embankments only under enough high embankments. The measured vertical loads on cap beams coincided with the predicted ones estimated by the theoretical equations, which have been presented in the previous studies on the basis of load transfer mechanisms according to either the punching shear failure mode during low filling stage or the soil arching failure mode during high filling stage. The mechanism of the load transfer was shifted beyond a critical height of embankment from the punching shear mechanism to the soil arching mechanism. Therefore, in order to mobilize soil arching in pile-supported embankments, the embankments should be designed at least higher than the critical height. A theoretical equation to estimate the critical height could be derived by equalizing the vertical loads estimated by the load transfer mechanisms on the basis of both the punching shear and the soil arching. The derived theoretical equation could predict very well the experimental critical height of embankment.

Determination of Critical Slope Height for Large Open-pit Coal Mine and Analysis of Displacement for Slope failure Prediction (대규모 노천 석탄광산의 한계사면높이 결정과 사면파괴 예측을 위한 계측자료 해석)

  • Jung, Yong-Bok;SunWoo, Choon;Lee, Jong-Beom
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.447-456
    • /
    • 2008
  • Open-pit mine slope design must be carried out from the economical efficiency and stability point of view. The overall slope angle is the primary design variable because of limited support or reinforce options available. In this study, the slope angle and critical slope height of large coal mine located in Pasir, Kalimantan, Indonesia were determined from safety point of view. Failure time prediction based on the monitored displacement using inverse velocity was also conducted to make up fir the uncertainty of the slope design. From the study, critical slope height was calculated as $353{\sim}438m$ under safety factor guideline (SF>1.5) and $30^{\circ}$ overall slope angle but loom is recommended as a critical slope height considering the results of sensitivity analysis of strength parameters. The results of inverse velocity analysis also showed good agreement with field slope cases. Therefore, failure of unstable slope can be roughly detected before real slope failure.

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

A Study on the Effects of Surface Patterns on Droplet Impingement Behaviors (액적 충돌 거동에 대한 표면 패턴의 영향에 관한 연구)

  • Jeon, Min Kyeong;Kim, Doo-In;Kang, Shinill;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.107-112
    • /
    • 2016
  • In this paper, the hydrophobic rough surfaces were prepared by employing a conventional nano-imprint lithography technique, and the effects of surface parameter, ratio of the top surface to the flat unit cell, on the impingement behaviors of liquid droplet were investigated to improve robustness of hydrophobic functionality. The critical height defined for the transition from rebound to fragmentation is measured by droplet impingement test in order to study dynamic behavior of an impinged droplet. It showed the critical height decreased with high surface parameter while it increased with low surface parameter. However, the critical height decreased again as surface parameter decreased further. Observed results suggest that the optimized surface pattern should be designed for the increased critical height.

Design of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 설계)

  • Kim, Tae-Wan;Yoon, Ki-Chan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.228-233
    • /
    • 2008
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. A critical axial load and a critical shoulder height which are not affected by edge are calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

Determination of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 결정)

  • Kim Tae-Wan;Cho Yong-Joo;Yoon Ki-Chan;Park Chang-Nam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.377-383
    • /
    • 2003
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The quasi-static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. The critical axial load and the critical shoulder height which are not affected by edge in the present shoulder height is calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

  • PDF