Browse > Article
http://dx.doi.org/10.6117/kmeps.2016.23.4.107

A Study on the Effects of Surface Patterns on Droplet Impingement Behaviors  

Jeon, Min Kyeong (Department of Opto-Mechatronics Engineering, Pusan National University)
Kim, Doo-In (BK21+Nano-integrated Cognomechatronics Engineering, Pusan National University)
Kang, Shinill (National Center for Optically-assisted Mechanical Systems, School of Mechanical Engineering, Yonsei University)
Jeong, Myung Yung (Department of Opto-Mechatronics Engineering, Pusan National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.23, no.4, 2016 , pp. 107-112 More about this Journal
Abstract
In this paper, the hydrophobic rough surfaces were prepared by employing a conventional nano-imprint lithography technique, and the effects of surface parameter, ratio of the top surface to the flat unit cell, on the impingement behaviors of liquid droplet were investigated to improve robustness of hydrophobic functionality. The critical height defined for the transition from rebound to fragmentation is measured by droplet impingement test in order to study dynamic behavior of an impinged droplet. It showed the critical height decreased with high surface parameter while it increased with low surface parameter. However, the critical height decreased again as surface parameter decreased further. Observed results suggest that the optimized surface pattern should be designed for the increased critical height.
Keywords
Water-repellency surface; Functional reliability; Drop impact behavior; Surface parameter; Critical height;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 R. Kannan, D. Sivakumar, "Drop impact process on a hydrophobic grooved surface", Colloids. Surf. A Physicochem. Eng. Asp., 317, 694 (2008).   DOI
2 J. Lee and S. Lee, "Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textures surfaces", Langmuir, 27, 6565 (2011).   DOI
3 J. Park, N. Cha, H. Shin and J. Park, Characterization of fluorocarbon thin films by contact angle measurements, J. Microelectron. Packag. Soc. 6(1), 39 (1999).
4 C. W. Wisser, Y. Tagawa, C. Sun and D. Lohse, "Microdroplet impact at very high velocity", Soft Matter, 8, 10732 (2012).   DOI
5 Y. Liu, L. Moevious, X. Xu, T. Qian, J. M. Yeomans and Z. Wang, "Pancake bouncing on superhydrophobic surfaces", Nat. Phys., 10, 515 (2014).   DOI
6 J. C. Bird, R. Dhiman, H. Kwon, and K. K. Varanasi, "Reducing the contact time of a bouncing drop", Nat., 503, 385 (2013).   DOI
7 R. Rioboo, M. Vou, A. Vaillant and J. D. Coninck, "Drop impact on porous superhydrophobicity polymer surfaces", Langmuir, 24(24), 14074 (2008).   DOI
8 D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, "Bouncing or sticky droplets : Impalement transitions on superhydrophobic micropatterned surfaces", Europhys. Lett., 74(2), 299 (2006).   DOI
9 H. Teisala, M. Tuominent, M. Amromaa, M. Stephan, J. M. Makela and J. J. Saarinen, "Nanostructures increase water droplet adheison on hierachically rough superhydrophobic surfaces", Langmuir, 28(6), 3138 (2012).   DOI
10 M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces", Langmuir, 16(13), 5754 (2000).   DOI
11 W. Cho, S. Cho, D. Kim and M. Jeong, "Effects of static contact angle and roughness on rolling resistance on rolling resistance of droplet", J. Microelectron. Packag. Soc., 23(1), 23 (2016).   DOI
12 N. D. Patil, R. Bhardwaj and A. Sharma, "Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces", Exp. Therm. Fluid. Sci., 74, 195 (2016).   DOI
13 A. Frohn and N. Roth, "Dynamics of Droplets", Springer Science & Business, 15 (2000).
14 S. Arnold, "A Contribution to Hydrodynamic Explanation of Turbulent Fluid Motions", International Congress of Mathematics, 3, 116 (1908).
15 S. Leclear, J. Leclear, Abhijeet, K. Park and W. Choi, "Drop impact on inclined superhydrophobic surfaces", J. Colloid. Interface. Sci., 461, 114 (2016).   DOI
16 M. S. Lee, S. D. Baek, D. H. Kim, T. H. Sung and K. C. Kim, "Dynamic benavior of droplet impinging onto a slender circular cylinder"(in Kor.), Trans. Korean. Soc. Mech. Eng., 11, 1732 (2014).
17 S. M. An, and S. Y. Lee, "Assessment of Maximm Spreading Models for a Newtonian Droplet Impacting on a Solid Surface"(in Kor.), Trans. Korean. Soc. Mech. Eng., 36(6), 633 (2012).   DOI
18 S. M. An and S. Y. Lee, "Examination of spread-recoil behavior of a shear-thining liquid drop on a dry wall", Journal of ILASS-KOREA, 14(3), 131 (2009)
19 S. U. Cho, D. I. Kim, W. K. Cho, B. S. Shin and M. Y. Jeong, "Diverging Effects of Topographical Continuity on the Wettability of a Rough Surface", A C S Applied Materials and Interfaces, 8(43), 29770 (2016).   DOI
20 R. Crooks, J. J. Cooper-Whitez and D. V. Boger, "The rule of dynamic surface tension and elasticity on the dynamics of drop impact", Chem. Eng. Sci., 56(19), 5575 (2001).   DOI
21 G. Vazquez, E. Alvarez and J. M. Navaza, "Surface tension of alcohol + water from 20 to $50^{\circ}C$", J. Chem. Eng. Data., 40, 611 (1995).   DOI
22 C. Hao, Y. Liu, X. Chen, J. Li, M. Zhang, Y. Zhao and Z. Wang, "Bioinspired Interfacial Materials with Enhanced Drop mobility: From Fundamentals to Multifunctional Applications", Small, 12(14), 1825 (2016).   DOI
23 B. Bhushan, K. Koch and Y. C. Jung, "Fabrication and chracterization of the hierarchical structure for superhydrophobicity and self-cleaning", Ultramicroscopy, 109, 1029 (2009).   DOI
24 H. Kim, S. Lee, C. Lee, M. H. Kim and J. Kim, "Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and its impact behaviors of a shooting water droplet" (in Kor.), Journal of the Korean Society for Precision Engineering, 29(9), 1020 (2012).   DOI
25 K. K. Varanasi, T. Deng, M. F. Hsu and N. Bhate, "Design of superhydrophobic surfaces for optimum roll-off and droplet impact resistance", Proc. ASME International Mechanical Engineering Congress and Exposition (IMECE), (2008).