• 제목/요약/키워드: Critical coagulation concentration

검색결과 13건 처리시간 0.027초

응집-UF 전처리 공정에 의한 잔류 금속염이 역삼투막에 미치는 영향 (Effect of residual metal salt on reverse osmosis membrane by coagulation-UF pretreatment process)

  • 고길현;김수현;강임석
    • 상하수도학회지
    • /
    • 제33권6호
    • /
    • pp.413-420
    • /
    • 2019
  • Pretreatment system of desalination process using seawater reverse osmosis(SWRO) membrane is the most critical step in order to prevent membrane fouling. One of the methods is coagulation-UF membrane process. Coagulation-UF membrane systems have been shown to be very efficient in removing turbidity and non-soluble and colloidal organics contained in the source water for SWRO pretreatment. Ferric salt coagulants are commonly applied in coagulation-UF process for pretreatment of SWRO process. But aluminum salts have not been applied in coagulation-UF pretreatment of SWRO process due to the SWRO membrane fouling by residual aluminum. This study was carried out to see the effect of residual matal salt on SWRO membrane followed by coagulation-UF pretreatment process. Experimental results showed that increased residual aluminum salts by coagulation-UF pretreatment process by using alum lead to the decreased SWRO membrane salt rejection and flux. As the salt rejection and flux of SWRO membrane decreased, the concentration of silica and residual aluminum decreased. However, when adjusting coagulation pH for coagulation-UF pretreatment process, the residual aluminum salt concentration was decreased and SWRO membrane flux was increased.

동적광산란 방법을 이용한 칼슘벤토나이트 콜로이드의 안정성에 대한 연구 (A Study on the Stability of the Ca-Bentonite Colloids Using a Dynamic Light Scattering Method)

  • 백민훈;박종훈;조원진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권3호
    • /
    • pp.12-19
    • /
    • 2006
  • 본 연구에서는 우리나라의 경주에서 산출된 칼슘벤토나이트 콜로이드의 안정성에 대한 연구를 동적광산란 방법을 이 용하여 이온강도 및 pH 등의 지화학적 조건 변화에 따른 크기 변화를 관측함으로써 수행하였다. 속도론적 및 평형상태에서 pH 및 이온강도의 변화에 따른 칼슘벤토나이트 콜로이드의 크기변화를 관측하였다. 실험결과 칼슘벤토나이트 콜로이드의 안정성은 접촉시간, 매질의 이온강도와 pH 에 매우 크게 의존함을 보였으며 0.01 M $NaClO_4$ 이상의 이온강도에서는 고려된 대부분의 pH 에서 콜로이드가 불안정함을 보였다. 아울러 칼슘벤토나이트 콜로이드의 안정비 W와 CCC(Critical Coagulation Concentration) 등을 속도론적 응집 실험 자료들을 이용하여 계산하였다. 안정비 W는 이온강도가 증가함에 따라 감소하는 경향을 뚜렷하게 나타내었으며 pH 변화에 따른 W 값의 변화는 이온강도에 따라 다른 양상을 보였다. 또 pH 7 근처에서 칼슘벤토나이트 콜로이드의 CCC 는 약 0.05 M $NaClO_4$ 임을 알 수 있었다.

사차 암모늄 염을 함유하는 농축된 콜로이드 액상 에이프런의 연속상에서의 안정성 (Stability of concentrated Colloidal Liquid Aphrons containing a quaternary ammonium salt in the continuous phase)

  • 함형철;홍원희;이철호
    • 청정기술
    • /
    • 제7권4호
    • /
    • pp.291-297
    • /
    • 2001
  • 본 연구는 중금속 추출 공정에 쓰이는 사차 암모늄 염인 Aliquat 336을 포함하는 콜로이드 액상 에이프런 (colloidal liquid aphrons, CLAs)을 지용성 계면활성제와 수용성 계면활성제를 사용하여 제조하였고 연속상에서 농축된 CLAs의 안정성을 표면으로 떠오르는 유기 용매의 양을 시간에 따라 측정하여 평가하였다. 다양한 조건에서 CLAs의 안정성을 비교하기 위해서 반감기가 도입되었다. 전해질의 첨가나 pH의 변화와 같은 연속상의 상태 변화는 CLAs의 파괴(break-up) 속도에 상당히 영향을 미치는데 이 파괴 속도가 급격히 변화하는 임계 응집 농도가 존재한다. pH의 변화에 따른 임계 응집 농도를 측정하였고 이온의 세기, 수용성 계면활성제 Sodium Dodecyl Sulfonate (SDBS)의 농도에 대한 CLAs의 안정성에 대한 영향을 고찰하였다.

  • PDF

응집-UF 전처리 공정이 압력지연삼투 공정에 미치는 영향 (Effects of coagulation-UF pretreatment on pressure retarded osmosis membrane process)

  • 고길현;김수현;김정선;강임석
    • 상하수도학회지
    • /
    • 제35권4호
    • /
    • pp.285-292
    • /
    • 2021
  • Osmotic power is to produce electric power by using the chemical potential of two flows with the difference of salinity. Water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. In a pressure retarded osmosis (PRO) process, river water and wastewater are commonly used as low salinity feed solution, whereas seawater and brine from the SWRO plant are employed as draw solution. During the PRO process using wastewater effluent as feed solution, PRO membrane fouling is usually caused by the convective or diffusive transport of PRO which is the most critical step of PRO membrane in order to prevent membrane fouling. The main objective of this study is to assess the PRO membrane fouling reduction by pretreatment to remove organic matter using coagulation-UF membrane process. The experimental results obtained from the pretreatment test showed that the optimum ferric chloride and PAC dosage for removal of organic matter applied for the coagulation and adsorption process was 50 mg/L as FeCl3 (optimum pH 5.5). Coagulation-UF pretreatment process was higher removal efficiency of organic matter, as also resulting in the substantial improvement of water flux of PRO membrane.

고/액간 계면에 있어서 분산의 안정성에 관한 이론적 고찰 (The Theoretical Investigation on the Stability of Solid/Liquid Dispersion)

  • 김태영;조경행;남기대
    • 한국응용과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 1995
  • In this outline, the stability of solid/liquid dispersion was theoretically investigated the matter from all angles by using the modified DLVO theory. The stability was handled various considerations such as a production and characteristics of electrical double layer, total interaction$(V_T)$ that consisting of attractive force$(V_A)$ and repulsion$(V_R)$. coagulation, the stability ratio(W), critical flocculation concentration (cfc) and zeta potential$(\zeta)$ etc. It was possible for us to examine with the stability ratio(W), critical flocculation concentration (cfc) and zeta potential$(\zeta)$ that may estimation of stability of solid/liquid dispersion experimentally.

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles

  • Choi, Soohoon;Chen, Ching-Lung;Johnston, Murray V.;Wang, Gen Suh;Huang, Chin-Pao
    • Membrane and Water Treatment
    • /
    • 제13권1호
    • /
    • pp.29-37
    • /
    • 2022
  • To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.

Flocculation과 Dissolved Air Floatation을 이용한 미세조류 수확 최적화 (Optimization of Microalgae Harvesting Using Flocculation and Dissolved Air Floatation)

  • 권혁진;정창규;김남훈;이진원
    • KSBB Journal
    • /
    • 제27권2호
    • /
    • pp.103-108
    • /
    • 2012
  • The harvesting of microalgae is a critical step that precedes biodiesel conversion. The most widely used harvesting technology is flocculation and floatation. In this study, the efficiency of the flocculants aluminum sulfate and poly aluminum chloride were evaluated for harvesting the alga Dunaliella tertiolecta in conjunction with dissolved air floatation. Using the jar test the optimum concentration range for aluminum sulfate was 1.0~1.5 g/L and for poly aluminium chloride, 1.5~2.0 g/L. The degree of coagulation was visualized by microscopy. Further analysis in combination with dissolved air floatation showed that the optimal concentration for aluminum sulfate was 1.1 g/L and for poly aluminum chloride, 1.6 g/L.

전기방사 조건이 셀룰로오스 웹 형상에 미치는 영향 (Parametric Study on the Morphology of Electrospun Cellulose Web)

  • 정연수;정영진
    • 한국염색가공학회지
    • /
    • 제24권1호
    • /
    • pp.62-68
    • /
    • 2012
  • Cellulose was electrospun over water collector and the cellulose solution was prepared using N-methyl-morpholine N-oxide/water(nNMMO/$H_2O$). The morphology of electrospun cellulose was investigated by scanning electron microscopy (SEM). SEM images showed that the fiber formation depended on processing parameters such as solution concentration, applied electric field strength, solution feeding rate and temperature of water in coagulation bath. High concentration, low temperature of water bath, and low feeding rate were more favorable to obtain fiber morphology. All the variables affected on the fluidity of the cellulose solution and diffusion of NMMO. Low fluidity and fast diffuision of NMMO was critical for obtaining fiber morphology.

Investigation of Al-hydroxide Precipitate Fouling on the Nanofiltration Membrane System with Coagulation Pretreatment: Effect of Inorganic Compound, Organic Compound, and Their Combination

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Environmental Engineering Research
    • /
    • 제16권3호
    • /
    • pp.149-157
    • /
    • 2011
  • Nanofiltration (NF) experiments were conducted to investigate fouling of Al-hydroxide precipitate and the influence of organic compound, inorganic compound, and their combination, i.e., multiple foulants. $CaCl_2$ and $MgSO_4$ were employed as surrogates of inorganic compounds while humic acid was used as surrogate of organic compound. The flux attained from NF experiments was fitted with the mathematical fouling model to evaluate the potential fouling mechanisms. Al-hydroxide fouling with a cake formation mechanism had little effect on the NF membrane fouling regardless of the Al concentration. The NF fouling by Al-hydroxide precipitate was deteriorated in presence of inorganic matter. The effect of Mg was more critical in increasing the fouling than Ca. This is because the Mg ions enhanced the resistances of the cake layer accumulated by the Al-hydroxide precipitate on the membrane surfaces. However, the fouling with Mg was dramatically mitigated by adding humic acid. It is interesting to observe that the removal of the conductivity was enhanced to 61.2% in presence of Mg and humic acid from 30.9% with Al-hydroxide alone. The influence of dissolved matter (i.e., colloids) was more negative than particulate matter on the NF fouling for Al-hydroxide precipitate in presence of inorganic and organic matter.

환경친화적인 Core-Shell Binder의 제조에 관한 연구 (A Study on the Environmentally Fraternized Preparation of Core-Shell Binder)

  • 권재범;이내우;설수덕;임재길;임종민
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.78-84
    • /
    • 2003
  • Core-shell composite particles of organic/organic were polymerized by using monomers such as methyl methacrylate(MMA) and styrene(St) in the presence of sodium dodecyl benzene sulfonate (SDBS) below critical micelle concentration(CMC) changing concentration, kind of initiators, emulsifiers, addition method of monomers and speed of agitation. In the PMMA/PSt and PSt/PMMA core-shell polymerization, to suppress the generation of new particles and to minimize the coagulation during the shell polymerization, the optimum conditions were $1.45{\times}10^{-5}mol/L$ and $2.91{\times}10^{-5}mol/L$ at concentration of SDBS respectively. The optimum concentration of the other initiator was $1.58{\times}10^{-3}mol/L$ of ammonium persulfate(APS) for core polymerization and $4.0{\times}10^{-4}mol/L$ of APS for shell polymerization.