A Study on the Stability of the Ca-Bentonite Colloids Using a Dynamic Light Scattering Method

동적광산란 방법을 이용한 칼슘벤토나이트 콜로이드의 안정성에 대한 연구

  • Published : 2006.06.01

Abstract

In this study, the stability of Ca-bentonite colloids from Gyeongju area was studied by investigating the changes in the size of the bentonite colloids using a dynamic light scattering method depending on the geochemical conditions such as pH and ionic strength. Kinetic and equilibrium coagulation behavior of the bentonite colloids was investigated by changing the pH and ionic strength of the bentonite suspensions. The results showed that the stability of the bentonite colloids strongly depended upon contact time, pH, and ionic strength. It was also shown that the bentonite colloids were unstable at higher ionic strength greater than 0.01 M $NaClO_4$ at whole pH values considered. In addition, the stability ratio Wand the critical coagulation concentration (CCC) were also calculated using the data from the kinetic coagulation experiments. The stability ratio W was decreased as the ionic strength increased and varied with pH depending on the ionic strength. The CCC of the Ca-bentonite colloids was about 0.05 M $NaClO_4$ around pH 7.

본 연구에서는 우리나라의 경주에서 산출된 칼슘벤토나이트 콜로이드의 안정성에 대한 연구를 동적광산란 방법을 이 용하여 이온강도 및 pH 등의 지화학적 조건 변화에 따른 크기 변화를 관측함으로써 수행하였다. 속도론적 및 평형상태에서 pH 및 이온강도의 변화에 따른 칼슘벤토나이트 콜로이드의 크기변화를 관측하였다. 실험결과 칼슘벤토나이트 콜로이드의 안정성은 접촉시간, 매질의 이온강도와 pH 에 매우 크게 의존함을 보였으며 0.01 M $NaClO_4$ 이상의 이온강도에서는 고려된 대부분의 pH 에서 콜로이드가 불안정함을 보였다. 아울러 칼슘벤토나이트 콜로이드의 안정비 W와 CCC(Critical Coagulation Concentration) 등을 속도론적 응집 실험 자료들을 이용하여 계산하였다. 안정비 W는 이온강도가 증가함에 따라 감소하는 경향을 뚜렷하게 나타내었으며 pH 변화에 따른 W 값의 변화는 이온강도에 따라 다른 양상을 보였다. 또 pH 7 근처에서 칼슘벤토나이트 콜로이드의 CCC 는 약 0.05 M $NaClO_4$ 임을 알 수 있었다.

Keywords

References

  1. 조원진, 이재완, 강철형, 전관식, 1999, 고준위폐기물처분장 완충재용 국산 벤토나이트 및 벤토나이트-모래 혼합물의 물리화학적, 광물학적 및 역학적 특성, KAERI/TR-1388/99, 한국원자력연구소, 대전
  2. Bitea, C., Walther, C., Kim, J.I., Geckeis, H., Rabung, Th., Scherbaum, F.J., and Cacuci, D.G, Time-resolved observation of $ZrO_2$-colloid agglomeration, 2003, Colloids and Surfaces A, 215, 55-60 https://doi.org/10.1016/S0927-7757(02)00415-6
  3. Buddemeier, R.W. and Hunt, J.R., 1988, Transport of colloidal contaminants in groundwater: radionuclide migration at the Nevada Test Site, Appl. Geochem., 3, 535-548 https://doi.org/10.1016/0883-2927(88)90025-X
  4. Busenberg, E. and Clemency, C.V., 1973, Determination of the cation exchange capacity of clays and soils using an ammonia electrode, Clays Clay Miner, 21, 213-217 https://doi.org/10.1346/CCMN.1973.0210403
  5. Chen, J.S., Cushman, J.H., and Low, P.F., 1990, Rheological behavior of Na-montrnorillonite suspensions at low electrolyte concentration, Clays Clay Miner., 38(1), 57-62 https://doi.org/10.1346/CCMN.1990.0380108
  6. Frenkel, H., Fey, M.V., and Levy, G.J., 1992, Organic and inorganic anion effects on reference and soil clay critical flocculation concentration, Soil Sci. Soc. Am J., 56, 1762-1766 https://doi.org/10.2136/sssaj1992.03615995005600060018x
  7. Glasgow, L.A., 1989, Effects of the physicochemical environment on floc properties, Chem. Engr. Prog., 85(8), 51-55
  8. Grindrod, P., Peletie, M., and Takase, H., 1999, Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids, Eng. Geol., 54, 159-165 https://doi.org/10.1016/S0013-7952(99)00071-X
  9. Heil, D. and Sposito, G., 1993, Organic matter role in illite soil colloids flocculation: I. Counter ions and pH, Soil Sci. Soc. Am. J., 57, 1241-1246 https://doi.org/10.2136/sssaj1993.03615995005700050014x
  10. Hesterberg, D. and Page, A.L., 1990, Critical coagulation concentration of sodium and potassium illite as affected by pH, Soil Sci. Soc. Am. J., 54, 735-739 https://doi.org/10.2136/sssaj1990.03615995005400030018x
  11. Holthoff, H., Egelhaaf, S.U., Borkovec, M., Schurtenberger, P., and Sticher, H., 1996, Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering, Langmuir, 12, 5541-5549 https://doi.org/10.1021/la960326e
  12. Hsu, J.-P., Yu, H.-Y., Yseng, S., 2006, Critical coagulation concentration of a salt-free colloidal dispersion, J. Phys. Chem. B., 110, 7600-7604 https://doi.org/10.1021/jp060090f
  13. Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., and Thompson, J.L., 1999, Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59 https://doi.org/10.1038/16231
  14. Kretzschmar, R., Holthoff, H., and Sticher, H., 1998, Influence of pH and humic avid on coagulation kinetics of kaolinite: A dynamic light scattering study, J. Call. Interf. Sci., 202, 95-103 https://doi.org/10.1006/jcis.1998.5440
  15. Lagaly, G, Ziesmer, S., 2003, Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions, Adv. Colloid Interf. Sci., 100-102, 105-128
  16. Ledin, A., Karlsson, S., Duker, A., and Allard, B., 1993, Applicability of photon correlation spectroscopy for measurement of concentration and size distribution of colloids in natural waters, Analytica Chimica Acta, 281, 421-428 https://doi.org/10.1016/0003-2670(93)85201-T
  17. McDowell-Boyer, L.M., 1992, Chemical mobilization of micronsized particles in saturated porous media under steady flow conditions, Environ. Sci. Technol., 26(3), 586-593 https://doi.org/10.1021/es00027a023
  18. Missana, T., Alonso, U., and Turrero, M.J., 2003, Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository, J. Contam. Hydrol., 61, 17-31 https://doi.org/10.1016/S0169-7722(02)00110-9
  19. Missana. T. and Adell, A., 2000, On the applicability of DLVO theory to the predictin of clay colloids stability, J. Call. Interf. Sci., 230, 150-156 https://doi.org/10.1006/jcis.2000.7003
  20. Mori, A., Alexander, W.R., Geckeis, H., Hauser, W., Schafer, T., Eikenberg, J., Fierz, Th., Degueldre, C., and Missana, T., 2003, The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuelide migration in a fractured rock, Colloids and Surfaces A, 217, 33-47 https://doi.org/10.1016/S0927-7757(02)00556-3
  21. Novich, B.E., and Ring, T.A., 1984, Colloid stability of clays using photon correlation spectroscopy, Clays Clay Miner., 32, 400-406 https://doi.org/10.1346/CCMN.1984.0320508
  22. Penrose, W.R., Polzer, W.L., Essington, E.H., Nelson, D.M., and Orlandini, K.A., 1990, Mobility of plutonium and americium through a shallow aquifer in a semiarid region, Environ. Sci. Technol., 24, 228-234 https://doi.org/10.1021/es00072a012
  23. Pusch, R., 1999, Clay colloid formation and release from MX80 buffer, SKB Technical Report TR-99-31, Swedish Nuclear Fuel and Waste Waste Management Co., Stockholm, Sweden
  24. Smith, M.J. et al., 1980, Engineered barrier development for a nuclear waste repository in basalt: An integration of current knowledge, RHO-BWl-ST 7, Rockwell Hanford Operations
  25. Tombacz, E., Filipcsei, G, Szekeres, M., and Gingl, Z., 1999, Particle aggregation in complex aquatic systems, Colloids and Surfaces A, 151, 233-244 https://doi.org/10.1016/S0927-7757(98)00635-9
  26. Tombacz, E., Szekeres, M., 2004, Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes, Appl. Clay Sci., 27, 75-94 https://doi.org/10.1016/j.clay.2004.01.001
  27. Van Olphen, H., 1977, An Introduction to Clay Colloid Chemistry,2nd Ed., A Wiley Interscience Publisher, New York, p. 32
  28. Virden, J.W. and Berg, J.C., 1992, The use of photon correlation spectroscopy for estimating the rate constant for doublet formation in an aggregating colloidal dispersion, J. Coll. Interf. Sci., 149(2), 528-535 https://doi.org/10.1016/0021-9797(92)90439-S