• 제목/요약/키워드: Critical Taylor Number

검색결과 17건 처리시간 0.026초

Wavy Taylor-Couette 유동에 대한 전산해석 (I) -축방향 유동이 없는 경우- (Numerical Study of Wavy Taylor-Couette Flow(I) -Without an Axial Flow-)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.697-704
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[J. Fluid Mech., 364, 1998]. They carried out experiment using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When Taylor number increases over the critical one, the flow instability caused by curved streamlines of the tangential flow induces Taylor vortices in the flow direction. As Taylor number further increases over another critical one, the steady Taylor vortices become unsteady and non-axisymmetrically wavy. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

반경비 및 각속도의 변화에 따른 Taylor 유동에 관한 연구 (A STUDY ON TAYLOR FLOW ACCORDING TO RADIUS RATION AND ANGULAR VELOCITY)

  • 배강열;김형범;정희택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.127-133
    • /
    • 2007
  • This paper represents the numerical study on Taylor flow according to the radius ratio and the angular velocity for flow between tow cylinder. The numerical model is consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8 mm, the numerical parameters are angular velocity and radius ratio. The numerical method is compared with the experimental results by Wereley, and the results are very good agreement. The critical Taylor number is calculated by theoretical and numerical analysis, and the results is showed the difference about ${\pm}10\;%$. As $Re/Re_c$ is increased, Taylor vortex is changed to wavy vortex, and then the wave number for azimuthal direction is increased. Azimuthal wave according to the radius ratio is showed high amplitude and low frequence in case of small radius ratio, and is showed low amplitude and high frequence in case of large radius ratio.

  • PDF

축방향 유동이 있는 Taylor-Couette 유동에 대한 전산 해석 (Numerical Study of Taylor-Couette Flow with an Axial Flow)

  • 황종연;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.444-449
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11 (12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

  • PDF

Wavy Taylor-Couette 유동에 대한 전산해석 (II) -축방향 유동이 있는 경우- (Numerical Study of Wavy Taylor-Couette Flow (II) -With an Axial Flow-)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.705-712
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. The case without the axial flow was investigated in the preceding paper. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11(12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

감귤원에서 가을철 귤응애 성충의 공간분포와 표본조사 (Spatial Dispersion and Sampling of Adults of Citrus Red Mite, Panonychus citri(McGregor) (Acari: Tetranychidae) in Citrus Orchard in Autumn Season)

  • 송정흡;김수남;류기중
    • 한국응용곤충학회지
    • /
    • 제42권1호
    • /
    • pp.29-34
    • /
    • 2003
  • 귤응애 성충의 표본추출법을 개발하기 위하여 2개년(2001-2002년)동안 8월부터 11월까지 잎과 열매에 대해 각 조사일에 평균밀도를 조사하였다. 잎과 열매에서 귤응애 성충 밀도의 관계를 시기별로 비교하였으며, Taylor's power law (TPL)와 Iwao's patchiness regression (IPR)을 이용하여 분산지수를 비교하였다. 잎(X)과 열매(Y)에서 귤응애 성충 밀도의 관계는 ln(Y+l)=1.029 ln(X+l)($r^2$=0.80)의 직선적인 관계가 있었으며, 열매가 성숙될수록 잎보다 열매에서 귤응애 밀도가 높아지는 경향이었다. 잎과 열매의 표본조사에서 TPL이 IPR보다 평균-분산 관계를 더 잘 나타내었으며, TPL의 기울기와 절편은 두 표본단위간, 연도간에 차이가 없었다. 정착도 0.25일 때 요방제밀도 2.0, 2.5와 3.0에서의 의사결정을 위한 표본추출조사법을 개발하였으며, 조사에 필요한 최대조사나무수(고정표본크기에서 필요 나무수)는 각각 19, 16과 15주였으며, 이 때의 의사결정임 계값 $T_{critical}$은 각각 554,609와 659였다.,609와 659였다.

안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적 연구 (Experimental Study on the Helical Flow Field in a Concentric Annulus with Rotating Inner Cylinders)

  • 황영규;김영주
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.822-833
    • /
    • 2000
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow has been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

에너지 효율적 반복 SIC-MMSE MIMO 검출 (Energy efficient joint iterative SIC-MMSE MIMO detection)

  • 클라우파브리스;아흐메드살림;김수영
    • 한국위성정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.22-28
    • /
    • 2015
  • 본 논문에서는 연판정 간섭 소거 최소 자승-오류(soft interference cancellation and minimum mean squared-error; SIC-MMSE) 방법을 이용한 새로운 에너지 효율적 다중안테나(multi-input multi-output; MIMO) 검출 기법을 소개한다. SIC-MMSE 방법의 가장 큰 계산 복잡도는 복소 행렬에 대하여 안테나 개수 만큼의 여러 번 역행렬 계산을 해야 하는데 있다. 본 논문에서는 행렬에 대한 테일러 시리즈 확장(Taylor series expansion) 기법을 이용하여 안테나 개수에 상관없이 단 한번의 역행렬 계산만을 필요로 하는 방법을 제안하며, 이와 같은 방법을 이용하여 계산의 복잡도를 감소시킬 수 있다. 본 논문에서 제안한 기법의 복잡도 감소 효과는 안테나 개수가 증가함에 따라 더 크게 나타난다. 본 논문에서 제시한 시뮬레이션 결과를 통하여 제안한 기법이 기존의 SIC-MMSE 기법에 비하여 더 적은 복잡도로 거의 동일한 성능을 도출할 수 있음을 알 수 있다.

내부회전실린더를 가진 동심환형관에서 반경비의 영향에 관한 수치해석적 연구 (Numerical Analysis on Effects of Radius Ratio in a Concentric Annulus with a Rotating Inner Cylinder)

  • 배강열;김형범;이상혁
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.327-330
    • /
    • 2006
  • This paper represents the numerical analysis on effects of radius ratio in a concentric annulus with a rotating inner cylinder. The numerical model consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8mm, the numerical parameters are angular velocity and radius ratio. Also, the whole walls of numerical model have no-slip and the working fluid is used water at $20^{\circ}C$. The numerical analysis is assumed the transient state to observe the flow variations by time and the 3-D cylindrical coordinate system. The calculation grid adopted a non-constant grid for dense arrangement near the wall side of cylinder, the standard $k-{\omega}$ high Reynolds number model to consider the effect of turbulence flow and wall, the fully implicit method for time term and the quick scheme for momentum equation. The numerical method is compared with the experimental results by Wereley and Lueptow, and the results are very good agreement. As the results, TVF isn't appeared when Re is small because of the initial flow instability is disappear by effect of the centrifugal force and viscosity. The vortex size is from 0.8 to 1.1 for TVF at various $\eta$, and the traveling distance for wavy vortex have the critical traveling distance for each case.

  • PDF

Experimental Study on the Vortex Flow in a Concentric Annulus with a Rotating Inner Cylinder

  • Kim, Young-Ju;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.562-570
    • /
    • 2003
  • This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0~600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and. then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Re$\_$c/ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

환형관내 비뉴튼유체의 회전유동에 관한 연구 (Flow of non-Newtonian fluid in a concentric annulus with rotation)

  • 김영주;우남섭;서병택;황영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2095-2100
    • /
    • 2003
  • This Experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin-friction coefficients have been measured for fully developed flow of bentonite-water solution(5%) when the inner cylinder rotates at the speed $0{\sim}400rpm$. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number $R_o$ With respect to the skin friction coefficients. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regime, the skin friction coefficient is increased by the inner cylinder rotation. The critical (bulk flow) Reynolds number $Re_c$ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

  • PDF