• Title/Summary/Keyword: Critical Pathways

Search Result 268, Processing Time 0.027 seconds

Current Drugs and Drug Targets in Non-Small Cell Lung Cancer: Limitations and Opportunities

  • Daga, Aditi;Ansari, Afzal;Patel, Shanaya;Mirza, Sheefa;Rawal, Rakesh;Umrania, Valentina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4147-4156
    • /
    • 2015
  • Lung cancer is a serious health problem and leading cause of death worldwide due to its high incidence and mortality. More than 80% of lung cancers feature a non-small cell histology. Over few decades, systemic chemotherapy and surgery are the only treatment options in this type of tumor but due to their limited efficacy and overall poor survival of patients, there is an urge to develop newer therapeutic strategies which circumvent the problems. Enhanced knowledge of translational science and molecular biology have revealed that lung tumors carry diverse driver gene mutations and adopt different intracellular pathways leading to carcinogenesis. Hence, the development of targeted agents against molecular subgroups harboring critical mutations is an attractive approach for therapeutic treatment. Targeted therapies are clearly more preferred nowadays over systemic therapies because they target tumor specific molecules resulting with enhanced activity and reduced toxicity to normal tissues. Thus, this review encompasses comprehensive updates on targeted therapies for the driver mutations in non-small cell lung cancer (NSCLC) and the potential challenges of acquired drug resistance faced i n the field of targeted therapy along with the imminent newer treatment modalities against lung cancer.

Insights into the Diverse Roles of miR-205 in Human Cancers

  • Orang, Ayla Valinezhad;Safaralizadeh, Reza;Feizi, Mohammad Ali Hosseinpour
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.577-583
    • /
    • 2014
  • The recent discovery of tiny microRNAs (miRNAs) has brought about awareness of a new class of regulators of diverse pathways in many physiological and pathological processes, such as tumorigenesis. They modulate gene expression by targeting plethora of mRNAs, mostly reducing the protein yield of a targeted mRNA. With accumulation of information on characteristics of miR-205, complex and in some cases converse roles of miR-205 in tumor initiation, progression and metastasis are emerging. miR-205 acts either as an oncogene via facilitating tumor initiation and proliferation, or in some cases as a tumor suppressor through inhibiting proliferation and invasion. The aim of this review is to discuss miR-205 roles in different types of cancers. Given the critical effects of deregulated miR-205 on processes involved in tumorigenesis, they hold potential as novel therapeutic targets and biomarkers.

Signal Transducer and Activator of Transcription 3 - A Promising Target in Colitis-Associated Cancer

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.551-560
    • /
    • 2014
  • Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)-${\kappa}B$, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, $Wnt/{\beta}$-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.

Baicalein Inhibits Epithelial to Mesenchymal Transition via Downregulation of Cyr61 and LOXL-2 in MDA-MB231 Breast Cancer Cells

  • Nguyen, Linh Thi Thao;Song, Yeon Woo;Cho, Somi Kim
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.909-914
    • /
    • 2016
  • Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of the migratory and invasive capabilities associated with metastatic competence. Cysteine-rich protein 61 (CCN1/Cyr61) has been implicated as an important mediator in the proliferation and metastasis of breast cancer. Hence, Cyr61 and associated pathways are attractive targets for therapeutic interventions directed against the EMT. In the present study, we report that baicalein significantly inhibits the expression of Cyr61 and migration and invasion of MDA-MB231 human breast cancer cells. Exposure to baicalein led to increased E-cadherin expression, possibly due to the ubiquitination of Snail and Slug, which was mediated by the Cyr61/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. Further analysis revealed that baicalein inhibited the expression of lysyl oxidase like-2 (LOXL-2), which is a functional collaborator of Snail and Slug, and subsequently attenuated the direct interaction between LOXL-2 and Snail or Slug, thereby enhancing $GSK3{\beta}$-dependent Snail and Slug degradation. Our findings provide new insights into the antimetastatic mechanism of baicalein and may contribute to its beneficial use in breast cancer therapies.

Genetic relationship between the SPT3 gene and ARS/cAMP pathway in yeast cell cycle control (Genetic Relationship between the SPT3 Gene and RAS/cAMP Pathway in Yeast Cell Cycle Control)

  • Shin, Deug-Yong;Yun, Jean-Ho
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.158-165
    • /
    • 1996
  • The signal transduction pathways through the RAS gene product and adenyl cyclease play a critical role in regulation of the cell cycle in yeast, Saccharomyces cerevisiae. We examined the genetic relationship between the spt3 gene and ras/cAMP pathway. A mutation in the SPT3 gene suppressed cell cycle arrest at the G1 phase caused by either an inactivation of the RAS or CYR1 gene which encodes a yeast homologue of human ras proto-oncogene or adenyl cyclase, respectively. The phenotypes such as sporulation and heat shock resistancy, that resulted from a partial inactivation of the RAS or CYR1 genes, were also suppressed by the spt3 mutation. Expression of the SSA1 gene encoding one of th heat shock proteins (Hsp70) can be induced by heat shock or nitrogen starvation. Expression of this gene is derepressed in cry1-2 and spt3 mutants. The bcy 1 mutation repressed by the bcy1 mutation, but not in spt3 mutants. These results suggest that the SPT gene is involved in expression of genes that are affected by the RAS/cAMP pathway.

  • PDF

Endoplasmic reticulum stress in periimplantation embryos

  • Michalak, Marek;Gye, Myung Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.

Signal transfduction pathways for infection structure formation in the rice blast fungus, Magnaporthe grisea

  • Lee, Yong-Hwan;Khang, Chang-Hyun
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.41-44
    • /
    • 1999
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

In vitro Anti-obesity Effect of 4-hydroxybenzyl Alcohol from Cudrania tricuspidata

  • Choi, Jun-Hui;Park, Se-Eun;Kim, Myung-Kon;Lee, Hyo-Jeong;Seo, Kyoungsun;Kim, Seung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.81-81
    • /
    • 2018
  • The present study was investigated on in vitro anti-obesity effect of 4-hydroxybenzyl alcohol from Cudrania tricuspidata. We isolated various compounds from Cudrania tricuspidata. Among these compounds, anti-obesity effects of 4-hydroxybenzyl alcohol was examined by lipase activity assay, cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase type IV (PDE4) activity assay, and citrate synthase activity assay. 4-hydroxybenzyl alcohol and Cudrania tricuspidata extracts inhibited the enzymatic activities of lipase, PDE4, and citrate synthase. Lipase is known to mediate the hydrolysis of triacylglycerol in adipose tissue and cholesterol esters in other tissue or cells. Also, PDE4 hydrolyses cAMP, a crucial secondary messenger for in metabolic pathways including glucose and lipid metabolism, lipolysis, and thermogenic function. 4-hydroxybenzyl alcohol and Cudrania tricuspidata extracts induced the inhibitory effect against each enzymatic activity on several specific substrates as observed by detection at 405 or 412 nm. These findings might be attributable to the inhibition of adipogenesis, and partial prevention of obesity. In conclusion, these results show that 4-hydroxybenzyl alcohol and Cudrania tricuspidata may be a critical candidate as a natural anti-obesity source.

  • PDF

Phosphoinositide turnover in Toll-like receptor signaling and trafficking

  • Le, Oanh Thi Tu;Nguyen, Tu Thi Ngoc;Lee, Sang Yoon
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.361-368
    • /
    • 2014
  • Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.

DNA binding partners of YAP/TAZ

  • Kim, Min-Kyu;Jang, Ju-Won;Bae, Suk-Chul
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.126-133
    • /
    • 2018
  • Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene's expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.