Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.7.088

Phosphoinositide turnover in Toll-like receptor signaling and trafficking  

Le, Oanh Thi Tu (Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine)
Nguyen, Tu Thi Ngoc (Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine)
Lee, Sang Yoon (Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine)
Publication Information
BMB Reports / v.47, no.7, 2014 , pp. 361-368 More about this Journal
Abstract
Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.
Keywords
Membrane; Phosphoinositide; PI(4,5)P2; Signaling; Trafficking; Toll-like receptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Krauss, M. and Haucke, V. (2007) Phosphoinositides: Regulators of membrane traffic and protein function. FEBS Lett. 581, 2105-2111.   DOI   ScienceOn
2 Fitzgerald, K. A., Palsson-McDermott, E. M., Bowie, A. G., Jefferies, C. A., Mansell, A. S., Brady, G., Brint, E., Dunne, A., Gray, P., Harte, M. T., McMurray, D., Smith, D. E., Sims, J. E., Bird, T. A. and O'Neill, L. A. (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78-83.   DOI   ScienceOn
3 O'Neill, L. A. and Bowie, A. G. (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353-364.   DOI   ScienceOn
4 Kawai, T. and Akira, S. (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 13, 460-469.   DOI   ScienceOn
5 Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K. and Akira, S. (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324-329.   DOI   ScienceOn
6 Horng, T., Barton, G. M., Flavell, R. A. and Medzhitov, R. (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329-333.   DOI   ScienceOn
7 Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734.   DOI   ScienceOn
8 Horng, T., Barton, G. M. and Medzhitov, R. (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835-841.   DOI   ScienceOn
9 Kagan, J. C. and Medzhitov, R. (2006) Phosphoinositidemediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943-955.   DOI   ScienceOn
10 Marek, L. R. and Kagan, J. C. (2012) Phosphoinositide binding by the Toll adaptor dMyD88 controls antibacterial responses in Drosophila. Immunity 36, 612-622.   DOI   ScienceOn
11 Funakoshi, Y., Hasegawa, H. and Kanaho, Y. (2011) Regulation of PIP5K activity by Arf6 and its physiological significance. J. Cell. Physiol. 226, 888-895.   DOI   ScienceOn
12 Wan, T., Liu, T., Zhang, H., Tang, S. and Min, W. (2010) AIP1 functions as Arf6-GAP to negatively regulate TLR4 signaling. J. Biol. Chem. 285, 3750-3757.   DOI   ScienceOn
13 Nguyen, T. T., Kim, Y. M., Kim, T. D., Le, O. T., Kim, J. J., Kang, H. C., Hasegawa, H., Kanaho, Y., Jou, I. and Lee, S. Y. (2013) Phosphatidylinositol 4-phosphate 5-kinase alpha facilitates Toll-like receptor 4-mediated microglial inflammation through regulation of the Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) location. J. Biol. Chem. 288, 5645-5659.   DOI
14 Lee, S. Y., Kim, B., Jeong, H. K., Min, K. J., Liu, T., Park, J. Y., Joe, E. H. and Jou, I. (2010) Enhanced phosphatidylinositol 4-phosphate 5-kinase alpha expression and PI(4,5)P2 production in LPS-stimulated microglia. Neurochem. Int. 57, 600-607.   DOI   ScienceOn
15 Lee, S. Y., Kim, B., Yoon, S., Kim, Y. J., Liu, T., Woo, J. H., Chwae, Y. J., Joe, E. H. and Jou, I. (2010) Phosphatidylinositol 4-phosphate 5-kinase alpha is induced in ganglioside-stimulated brain astrocytes and contributes to inflammatory responses. Exp. Mol. Med. 42, 662-673.   DOI   ScienceOn
16 Jou, I., Lee, J. H., Park, S. Y., Yoon, H. J., Joe, E. H. and Park, E. J. (2006) Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am. J. Pathol. 168, 1619-1630.   DOI   ScienceOn
17 Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K. and Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643.   DOI   ScienceOn
18 Choi, Y. J., Jung, J., Chung, H. K., Im, E. and Rhee, S. H. (2013) PTEN regulates TLR5-induced intestinal inflammation by controlling Mal/TIRAP recruitment. FASEB J. 27, 243-254.   DOI
19 Barton, G. M. and Kagan, J. C. (2009) A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535-542.   DOI   ScienceOn
20 Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S. and Medzhitov, R. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361-368.   DOI   ScienceOn
21 Fitzgerald, K. A., Rowe, D. C., Barnes, B. J., Caffrey, D. R., Visintin, A., Latz, E., Monks, B., Pitha, P. M. and Golenbock, D. T. (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043-1055.   DOI   ScienceOn
22 Watts, C. (2008) Location, location, location: identifying the neighborhoods of LPS signaling. Nat. Immunol. 9, 343-345.   DOI   ScienceOn
23 Brandt, K. J., Fickentscher, C., Kruithof, E. K. and de Moerloose, P. (2013) TLR2 ligands induce NF-kappaB activation from endosomal compartments of human monocytes. PLoS One 8, e80743.   DOI
24 Zanoni, I., Ostuni, R., Marek, L. R., Barresi, S., Barbalat, R., Barton, G. M., Granucci, F. and Kagan, J. C. (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868-880.   DOI   ScienceOn
25 Strahl, T. and Thorner, J. (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta 1771, 353-404.   DOI   ScienceOn
26 Chiang, C. Y., Veckman, V., Limmer, K. and David, M. (2012) Phospholipase Cgamma-2 and intracellular calcium are required for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J. Biol. Chem. 287, 3704-3709.   DOI
27 Martin, T. F. (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14, 231-264.   DOI   ScienceOn
28 Varnai, P. and Balla, T. (2006) Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim. Biophys. Acta 1761, 957-967.   DOI   ScienceOn
29 Liu, Y. and Bankaitis, V. A. (2010) Phosphoinositide phosphatases in cell biology and disease. Prog. Lipid Res. 49, 201-217.   DOI   ScienceOn
30 Di Paolo, G. and De Camilli, P. (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651-657.   DOI   ScienceOn
31 Halstead, J. R., Jalink, K. and Divecha, N. (2005) An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol. Sci. 26, 654-660.   DOI   ScienceOn
32 McCrea, H. J. and De Camilli, P. (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology 24, 8-16.   DOI   ScienceOn
33 Blero, D., Payrastre, B., Schurmans, S. and Erneux, C. (2007) Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch. - Eur. J. Physiol. 455, 31-44.   DOI
34 Vicinanza, M., D'Angelo, G., Di Campli, A. and De Matteis, M. A. (2008) Phosphoinositides as regulators of membrane trafficking in health and disease. Cell. Mol. Life Sci. 65, 2833-2841.   DOI   ScienceOn
35 Takenawa, T. and Itoh, T. (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533, 190-206.   DOI   ScienceOn
36 van den Bout, I. and Divecha, N. (2009) PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J. Cell Sci. 122, 3837-3850.   DOI   ScienceOn
37 Doughman, R. L., Firestone, A. J. and Anderson, R. A. (2003) Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J. Membr. Biol. 194, 77-89.   DOI   ScienceOn
38 Ishihara, H., Shibasaki, Y., Kizuki, N., Katagiri, H., Yazaki, Y., Asano, T. and Oka, Y. (1996) Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 271, 23611-23614.   DOI   ScienceOn
39 Kanaho, Y., Kobayashi-Nakano, A. and Yokozeki, T. (2007) The phosphoinositide kinase PIP5K that produces the versatile signaling phospholipid PI4,5P(2). Biol. Pharm. Bull. 30, 1605-1609.   DOI   ScienceOn
40 Ishihara, H., Shibasaki, Y., Kizuki, N., Wada, T., Yazaki, Y., Asano, T. and Oka, Y. (1998) Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J. Biol. Chem. 273, 8741-8748.   DOI   ScienceOn
41 Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291-1335.
42 Hammond, G. R. and Schiavo, G. (2007) Polyphosphoinositol lipids: under-PPInning synaptic function in health and disease. Dev. Neurobiol. 67, 1232-1247.   DOI   ScienceOn
43 Mao, Y. S. and Yin, H. L. (2007) Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch. - Eur. J. Physiol. 455, 5-18.   DOI
44 Cremona, O., Di Paolo, G., Wenk, M. R., Luthi, A., Kim, W. T., Takei, K., Daniell, L., Nemoto, Y., Shears, S. B., Flavell, R. A., McCormick, D. A. and De Camilli, P. (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179-188.   DOI   ScienceOn
45 Wenk, M. R., Pellegrini, L., Klenchin, V. A., Di Paolo, G., Chang, S., Daniell, L., Arioka, M., Martin, T. F. and De Camilli, P. (2001) PIP kinase Igamma is the major PI(4,5) P(2) synthesizing enzyme at the synapse. Neuron 32, 79-88.   DOI   ScienceOn
46 Takenawa, T. and Itoh, T. (2006) Membrane targeting and remodeling through phosphoinositide-binding domains. IUBMB Life 58, 296-303.   DOI   ScienceOn
47 Botelho, R. J., Teruel, M., Dierckman, R., Anderson, R., Wells, A., York, J. D., Meyer, T. and Grinstein, S. (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353-1368.   DOI
48 Roth, M. G. (2004) Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84, 699-730.   DOI   ScienceOn
49 Balla, T. (2005) Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J. Cell Sci. 118, 2093-2104.   DOI   ScienceOn
50 Takeuchi, O. and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820.   DOI   ScienceOn
51 Kawai, T. and Akira, S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-384.   DOI   ScienceOn
52 Akira, S., Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801.   DOI   ScienceOn
53 Lehnardt, S. (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58, 253-263.
54 Olson, J. K. and Miller, S. D. (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916-3924.   DOI
55 Farina, C., Aloisi, F. and Meinl, E. (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138-145.   DOI   ScienceOn
56 Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A. and Antel, J. P. (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320-4330.   DOI
57 Aloisi, F. (2001) Immune function of microglia. Glia 36, 165-179.   DOI   ScienceOn
58 Teismann, P. and Schulz, J. B. (2004) Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell Tissue Res. 318, 149-161.   DOI   ScienceOn
59 Block, M. L., Zecca, L. and Hong, J. S. (2007) Microgliamediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69.   DOI   ScienceOn
60 Jin, J. J., Kim, H. D., Maxwell, J. A., Li, L. and Fukuchi, K. (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease. J. Neuroinflammation 5, 23.   DOI   ScienceOn
61 Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., Schulz- Schuffer, W. and Fassbender, K. (2007) Role of the tolllike receptor 4 in neuroinflammation in Alzheimer's disease. Cell. Physiol. Biochem. 20, 947-956.   DOI   ScienceOn
62 Block, M. L., Zecca, L. and Hong, J.-S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69.   DOI   ScienceOn
63 Okun, E., Griffioen, K. J., Lathia, J. D., Tang, S. C., Mattson, M. P. and Arumugam, T. V. (2009) Toll-like receptors in neurodegeneration. Brain Res. Rev. 59, 278-292.   DOI   ScienceOn
64 Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K. and Akira, S. (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144-1150.   DOI   ScienceOn
65 Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511.   DOI   ScienceOn
66 Carpentier, P. A., Duncan, D. S. and Miller, S. D. (2008) Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav. Immun. 22, 140-147.   DOI   ScienceOn
67 Sasaki, T., Takasuga, S., Sasaki, J., Kofuji, S., Eguchi, S., Yamazaki, M. and Suzuki, A. (2009) Mammalian phosphoinositide kinases and phosphatases. Prog. Lipid Res. 48, 307-343.   DOI   ScienceOn
68 Kwiatkowska, K. (2010) One lipid, multiple functions: how various pools of PI(4,5)P2 are created in the plasma membrane. Cell. Mol. Life Sci. 67, 3927-3946.   DOI
69 Mao, Y. S., Yamaga, M., Zhu, X., Wei, Y., Sun, H. Q., Wang, J., Yun, M., Wang, Y., Di Paolo, G., Bennett, M., Mellman, I., Abrams, C. S., De Camilli, P., Lu, C. Y. and Yin, H. L. (2009) Essential and unique roles of PIP5K-gamma and -alpha in Fcgamma receptor-mediated phagocytosis. J. Cell Biol. 184, 281-296.   DOI   ScienceOn
70 Nagpal, K., Plantinga, T. S., Wong, J., Monks, B. G., Gay, N. J., Netea, M. G., Fitzgerald, K. A. and Golenbock, D. T. (2009) A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J. Biol. Chem. 284, 25742-25748.   DOI   ScienceOn