• Title/Summary/Keyword: Critical Low Temperature

Search Result 501, Processing Time 0.024 seconds

Formulation of Failure Strain according to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36) (저온용 고장력강(EH36)의 평균 응력 삼축비에 따른 파단 변형률 정식화)

  • Choung, Joonmo;Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.19-26
    • /
    • 2013
  • Stress triaxiality is recognized as one of the most important factors for predicting the failure strain of ductile metals. This study dealt with the effect of the average stress triaxiality on the failure strain of a typical low-temperature high-strength marine structural steel, EH36. Tensile tests were carried out on flat specimens with different notches, from relatively smooth to very sharp levels. Numerical simulations of each specimen were performed by using ABAQUS. The failure initiation points in numerical simulations were identified from a comparison of the engineering stress vs. strain curves obtained from experiments with simulated ones. The failure strain curves for various dimensionless critical energy levels were established in the average stress triaxiality domain and compared with the identified failure strain points. It was observed that most of the failure initiation points were approximated with a 100% dimensionless critical energy curve. It was concluded that the failure strains were well expressed as a function of the average stress triaxiality.

Structure and Characteristics of Diffusion Flaame behind a Bluff-body in a Divergent Flow(II) (확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 2)

  • ;;Lee, Joong Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2981-2994
    • /
    • 1995
  • In order to elucidate the effects of positive pressure gradient on flame properties, structure and stabilization, an experimental study is made on turbulent diffusion flame stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. In this paper, stabilization, characteristics and flame structure are examined by varying the divergent angle of duct. Temperature, ion current and Schlieren photographs were measured. It is found that critical divergent angle is expected to be about 8 ~ 12 degree through blow-off velocity pattern to divergent angle and the positive pressure gradient influences the flame temperature, intensity of ion current and eddy structure behind the rod. With the increase of divergent angle, typical temperature of recirculation zone is low but intensity of ion current is high in shear layer behind rod. Energy distributions of fluctuating temperature and ion current signals turn up low frequency corresponding to large scale eddies but high frequency corresponding to small scale eddies as well as low with the increase of divergent angle. Therefore the flame structure becomes a typical distributed-reacting flame.

Fluorescence Spectroscopy Studies on Micellization of Poloxamer 407 Solution

  • Lee, Ka-Young;Shin, Sang-Chul;Oh, In-Joon
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.653-658
    • /
    • 2003
  • It has been reported that at low temperature region, poloxamers existed as a monomer. Upon warming, an equilibrium between unimers and micelles was established, and finally micelle aggregates were formed at higher temperature. In this study, the fluorescence spectroscopy was used to study the micelle formation of the poloxamer 407 in aqueous solution. The excitation and emission spectra of pyrene, a fluorescence probe, were measured as a function of the concentration of poloxamer 407 and temperature. A blue shift in the emission spectrum and a red shift in the excitation spectrum were observed as pyrene transferred from an aqueous to a hydrophobic micellar environment. From the $I_1/I_3 and I_{339}/I_{333}$ results, critical micelle concentration (cmc) and critical micelle temperature (cmt) were determined. Also, from the fluorescence spectra of the probe molecules such as 8-anilino-1-naphthalene sulfonic acid and 1-pyrenecarboxaldehyde, the blue shift of the $\lambda_{max}$ was observed. These results suggest a decrease in the polarity of the microenvironment around probe because of micelle formation. The poloxamer 407 above cmc strongly complexed with hydrophobic fluorescent probes and the binding constant of complex increased with increasing the hydrophobicity of the probe.

Low-temperature crystallization of high-dielectric (Ba,Sr)$TiO_3$ thin films for embedded capacitors

  • Cho, Kwang-Hwan;Kang, Min-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.21-21
    • /
    • 2010
  • (Ba,Sr)$TiO_3$ (BST) thin film with a perovskite structure has potential for the practical application in various functional devices such as nonvolatile-memory components, capacitor, gate insulator of thin-film transistors, and electro-optic devices for display. Normally, the BST thin films derived from sol-gel and sputtering are amorphous or partially crystalline when processed below $600^{\circ}C$. For the purpose of integrating BST thin film directly into a Si-based read-out integrated circuit (ROIC), it is necessary to process the BST film below $400^{\circ}C$. The microstructural and electrical properties of low-temperature crystallized BST film were studied. The BST thin films have been fabricated at $350^{\circ}C$ by UV-assisted rapidly thermal annealing (RTA). The BST films are in a single perovskite phase and have well-defined electrical properties such as high dielectric constant, low dielectric loss, low leakage current density, and high breakdown voltage. Photoexcitation of the organics contained in the sol-gel-derived films by high-intensity UV irradiation facilitates elimination of the organics and formation of the single-crystalline phase films at low temperatures. The amorphous BST thin film was transformed to a highly (h00)-oriented perovskite structure by high oxygen pressure processing (HOPP) at as low as $350^{\circ}C$. The dielectric properties of BST film were comparable to (or even better than) those of the conventionally processed BST films prepared by sputtering or post-annealing at temperature above $600^{\circ}C$. When external pressure was applied to the well-known contractive BST system during annealing, the nucleation energy barrier was reduced; correspondingly, the crystallization temperature decreased. The UV-assisted RTA and HOPP, as compatible with existing MOS technology, let the BST films be integrated into radio-frequency circuit and mixed-signal integrated circuit below the critical temperature of $400^{\circ}C$.

  • PDF

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Circuit Design of DRAM for Mobile Generation

  • Sim, Jae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • In recent few years, low-power electronics has been a leading drive for technology developments nourished by rapidly growing market share. Mobile DRAM, as a fundamental block of hand-held devices, is now becoming a product developed by limitless competition. To support application specific mobile features, various new power-reduction schemes have been proposed and adopted by standardization. Tightened power budget in battery-operated systems makes conventional schemes not acceptable and increases difficulty of the circuit design. The mobile DRAM has successfully moved down to 1.5V era, and now it is about to move to 1.2V. Further voltage scaling, however, presents critical problems which must be overcome. This paper reviews critical issues in mobile DRAM design and various circuit schemes to solve the problems. Focused on analog circuits, bitline sensing, IO line sensing, refresh-related schemes, DC bias generation, and schemes for higher data rate are covered.

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

CRITICAL HEAT FLUX ENHANCEMENT IN FLOW BOILING OF Al2O3 AND SiC NANOFLUIDS UNDER LOW PRESSURE AND LOW FLOW CONDITIONS

  • Lee, Seung-Won;Park, Seong-Dae;Kang, Sa-Rah;Kim, Seong-Man;Seo, Han;Lee, Dong-Won;Bang, In-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.429-436
    • /
    • 2012
  • Critical heat flux (CHF) is the thermal limit of a phenomenon in which a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the heat transfer efficiency, thus causing localized overheating of the heating surface. The enhancement of CHF can increase the safety margins and allow operation at higher heat fluxes; thus, it can increase the economy. A very interesting characteristic of nanofluids is their ability to significantly enhance the CHF. Nanofluids are nanotechnology-based colloidal dispersions engineered through the stable suspension of nanoparticles. All experiments were performed in round tubes with an inner diameter of 0.01041 m and a length of 0.5 m under low pressure and low flow (LPLF) conditions at a fixed inlet temperature using water, 0.01 vol.% $Al_2O_3$/water nanofluid, and SiC/water nanofluid. It was found that the CHF of the nanofluids was enhanced and the CHF of the SiC/water nanofluid was more enhanced than that of the $Al_2O_3$/water nanofluid.

High Temperature Deformation Behavior of L12 Modified Titanium Trialuminides Doped with Chromium and Copper (크롬 및 구리로 치환한 L12 Titanium Trialuminides합금의 고온변형거동)

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.317-323
    • /
    • 2018
  • Crystal structure of the $L1_2$ type $(Al,X)_3Ti$ alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the $L1_2$ type $(Al,X)_3Ti$ alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for $Al_{67.5}Ti_{25}Cr_{7.5}$, $Al_{65}Ti_{25}Cr_{10}$ and $Al_{62.5}Ti_{25}Cu_{12.5}$ alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.