• Title/Summary/Keyword: Critical Frequency

Search Result 1,457, Processing Time 0.039 seconds

A Study on Single-Stage High-Power-Factor Electronic Ballast for Discharge Lamps Operating in Critical Conduction Mode (임계모드에서 동작하는 단일 전력단 고역률 방전등용 전자식 안정기에 관한 연구)

  • Seo Cheol-Sik;Park Jae-Wook;Sim Kwang-Yeal;Kim Hae-Jun;Won Jae-Sun;Kim Dong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.601-608
    • /
    • 2005
  • This paper presents a novel single-stage high-power-factor electronic ballast for fluorescent lamps operating in critical conduction mode. The proposed topology is based on integration of boost converter as power factor corrector(PFC) and a half-bridge high frequency parallel resonant inverter into a single stage. The input stage of the boost converter is operating in critical conduction mode for positive and negative half cycle voltage respectively at line frequency(60Hz). So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. The simulated and experimental results for 100W fluorescent lamps operating at 42kHz switching frequency and 220V line voltage have been obtained. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method (Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발)

  • Lee, Young-Hyun;Yoo, Seungyeol;Kim, Jonghyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.

SEMICLASSICAL ASYMPTOTICS OF INFINITELY MANY SOLUTIONS FOR THE INFINITE CASE OF A NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL FREQUENCY

  • Aguas-Barreno, Ariel;Cevallos-Chavez, Jordy;Mayorga-Zambrano, Juan;Medina-Espinosa, Leonardo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.241-263
    • /
    • 2022
  • We consider a nonlinear Schrödinger equation with critical frequency, (P𝜀) : 𝜀2∆v(x) - V(x)v(x) + |v(x)|p-1v(x) = 0, x ∈ ℝN, and v(x) → 0 as |x| → +∞, for the infinite case as described by Byeon and Wang. Critical means that 0 ≤ V ∈ C(ℝN) verifies Ƶ = {V = 0} ≠ ∅. Infinite means that Ƶ = {x0} and that, grossly speaking, the potential V decays at an exponential rate as x → x0. For the semiclassical limit, 𝜀 → 0, the infinite case has a characteristic limit problem, (Pinf) : ∆u(x)-P(x)u(x) + |u(x)|p-1u(x) = 0, x ∈ Ω, with u(x) = 0 as x ∈ Ω, where Ω ⊆ ℝN is a smooth bounded strictly star-shaped region related to the potential V. We prove the existence of an infinite number of solutions for both the original and the limit problem via a Ljusternik-Schnirelman scheme for even functionals. Fixed a topological level k we show that vk,𝜀, a solution of (P𝜀), subconverges, up to a scaling, to a corresponding solution of (Pinf ), and that vk,𝜀 exponentially decays out of Ω. Finally, uniform estimates on ∂Ω for scaled solutions of (P𝜀) are obtained.

An Effect Absorption Property of Compound Absorption Structure on the Membranous and the Back Resonator type (표면재 및 배후 다공질재의 유형에 따른 복합 흡음구조의 흡음특성)

  • 김태훈;주문기;오양기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.65-71
    • /
    • 2001
  • Absorbers such as porous materials and panels have limited absorption characteristics to some frequency bands. There is a need for absorbers with high absorption coefficients in a wide frequency ranges to make good response of room acoustics. This is almost impossible for a single absorption material. Composite absorption structure with cover, porous material. and air gap is known to have those wide frequency characteristics. In this basis. various composite absorption structures are measured and investigated as wide range absorption structures. Measurements are performed according to an international standard, ISO 354. Various surface types such as wooden slits, wood/steel perforated panels are selected as surface covers, and also various porous materials such as polyurethanes, polyesters, and glasswools are used inside the covers. Result shows that the area of void parts of surface materials is critical to high frequency absorptions, and thickness of air gaps are critical factor of the peak absorptions of low frequency bands.

  • PDF

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

A Method of Muscle Fatigue Analysis for Effective Gait Rehabilitation (효과적인 보행재활훈련을 위한 근피로도 분석방법)

  • Kim, Y.H.;Kim, S.J.;Shim, H.M.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.1
    • /
    • pp.39-43
    • /
    • 2013
  • In this paper, we present a effective method of gait rehabilitation training using critical point of median frequency in muscle fatigue analysis using EMG. To target the five healthy volunteers, EMG signal were measured in the quadriceps femoris muscle and the tibialis anterior muscle in order to determine muscle fatigue. We performed a test targeting three adult male for 30 minutes on a treadmill at a speed of 6km/h same. EMG signal analysis in frequency and median frequency is calculated to quantification of muscle fatigue, and calculated the critical point which is saturated by muscle fatigue during 30 minutes. We set saturated point the threshold which muscle can withstand. The results of this paper, we are able to quantify the threshold of the muscle.

  • PDF

Study on the Vibration Characteristics of Yaw Gear System for Large-Capacity Offshore Wind Turbine

  • HyoungWoo Lee;SeoWon Jang;Seok-Hwan Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.164-171
    • /
    • 2023
  • Vibration and noise must be considered to maximize the efficiency of a yaw system and reduce the fatigue load acting on a wind turbine. This study investigated a method for analyzing yaw-system vibration based on the change in the load-duration distribution (LDD). A substructure synthesis method was combined with a planetary gear train rotational vibration model and finite element models of the housing and carriers. For the vibration excitation sources, the mass imbalance, gear mesh frequency, and bearing defect frequency were considered, and a critical speed analysis was performed. The analysis results showed that the critical speed did not occur within the operating speed range, but a defect occurred in the bearing of the first-stage planetary gear system. It was found that the bearing stiffness and first natural frequency increased with the LDD load. In addition, no vibration occurred in the operating speed range under any of the LDD loads. Because the rolling bearing stiffness changed with the LDD, it was necessary to consider the LDD when analyzing the wind turbine vibration.

Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 동적 점탄성)

  • Song, Ki-Won;Bae, Jun-Woong;Chang, Gap-Shik;Noh, Dong-Hyun;Park, Yung-Hoon;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.295-307
    • /
    • 1999
  • Using a Rheometries Fluids Spectrometer (RFS II), the dynamic viscoelastic properties of aqueous poly(ethylene oxide) (PEO) solutions in small amplitude oscillatory shear flow fields have been measured over a wide range of angular frequencies. The angular frequency dependence of the storage and loss moduli at various molecular weights and concentrations was reported in detail, and the result was interpreted using the concept of a Deborah number De. In addition, the experimentally determined critical angular frequency at which the storage and loss moduli become equivalent was compared with the calculated characteristic time (or its inverse value), and their physical significance in analyzing the dynamic viscoelastic behavior was discussed. Finally, the relationship between steady shear flow and dynamic viscoelstic properties was examined by evaluating the applicability of some proposed models that describe the correlations between steady flow viscosity and dynamic viscosity, dynamic fluidity, and complex viscosity. Main results obtained from this study can be summarized as follows: (1) At lower angular frequencies where De<1, the loss modulus is larger than the storage modulus. However, such a relation between the two moduli is reversed at higher angular frequencies where De>l, indicating that the elastic behavior becomes dominant to the viscous behavior at frequency range higher than a critical angular frequency. (2) A critical angular frequency is decreased as an increase in concentration and/or molecular weight. Both the viscous and elastic properties show a stronger dependence on the molecular weight than on the concentration. (3) A characteristic time is increased with increasing concentration and/or molecular weight. The power-law relationship holds between the inverse value of a characteristic time and a critical angular frequency. (4) Among the previously proposed models, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. The Osaki relation can be regarded to some extent as a suitable model. However, the DeWitt, Pao and HusebyBlyler models are not applicable to describe the correlations between steady shear flow and dynamic viscoelastic properties.

  • PDF

New Method to Quantify the Operation Condition for Zone 3 Impedance Relays during Low-Frequency Power Swings

  • Li, Shenghu
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.29-35
    • /
    • 2008
  • With long time setting, zone 3 impedance relays are considered insensitive to power swings, and their operation condition during power swings is seldom analyzed. Instead of ti me-consuming simulation to the swing loci, their operation condition is directly quantified by polynominal functions in this paper to find the critical swing angle and frequency for relay operation under different relay settings and system parameters. It is found: (1) the swing loci are more densely populated inside than outside of the protection region, which corresponds to long residence time and possible relay operations; (2) the relays may be sensitive to load encroac hments and stable power swings with different relay settings and system parameters; (3) the critical swing frequency may be in the range of low-frequency power swings.

An Auto-tuning Algorithm of PI Controller Using Time Delay Element (시간 지연 요소를 이용한 PI 제어기 자동 동조 알고리즘)

  • Oh, Seung-Rohk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.1-5
    • /
    • 2010
  • We propose an algorithm which can classify the system should use a PI controller, which have a weak high frequency attenuation characteristics near the critical frequency. To classify the system, we use a time delay element to calculate a gain attenuation rate near the critical frequency. The proposed algorithm also can design PI controller with the given magnitude margin and phase margin specification. The proposed algorithm uses time delay element and saturation function to identify the one point information in frequency domain. We justify the proposed algorithm via the simulation.