References
- A. Ambrosetti, M. Badiale, and S. Cingolani, Semiclassical states of nonlinear Schrodinger equations, Arch. Rational Mech. Anal. 140 (1997), no. 3, 285-300. https://doi.org/10.1007/s002050050067
- V. Ambrosio and T. Isernia, Multiplicity and concentration results for some nonlinear Schrodinger equations with the fractional p-Laplacian, Discrete Contin. Dyn. Syst. 38 (2018), no. 11, 5835-5881. https://doi.org/10.3934/dcds.2018254
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
- J. Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations 22 (1997), no. 9-10, 1731-1769. https://doi.org/10.1080/03605309708821317
- J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295-316. https://doi.org/10.1007/s00205-002-0225-6
- M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), no. 2, 121-137. https://doi.org/10.1007/BF01189950
- P. Felmer and J. Mayorga-Zambrano, Multiplicity and concentration for the nonlinear Schrodinger equation with critical frequency, Nonlinear Anal. 66 (2007), no. 1, 151-169. https://doi.org/10.1016/j.na.2005.11.017
- A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397-408. https://doi.org/10.1016/0022-1236(86)90096-0
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/978-3-642-61798-0
- C. Gui, Existence of multi-bump solutions for nonlinear Schrodinger equations via variational method, Comm. Partial Differential Equations 21 (1996), no. 5-6, 787-820. https://doi.org/10.1080/03605309608821208
- Q. Han and F. Lin, Elliptic partial differential equations, second edition, Courant Lecture Notes in Mathematics, 1, Courant Institute of Mathematical Sciences, New York, 2011.
- J. B. Keller, Semiclassical mechanics, SIAM Rev. 27 (1985), no. 4, 485-504. https://doi.org/10.1137/1027139
- P. Meystre, Atom Optics, Springer Series on Atomic, Optical and Plasma Physics, Springer-Verlag, 2001.
- D. Mills, Nonlinear Optics, Springer-Verlag, Berlin, 1998.
- Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrodinger equations under multiple well potential, Comm. Math. Phys. 131 (1990), no. 2, 223-253. http://projecteuclid.org/euclid.cmp/1104200835 https://doi.org/10.1007/BF02161413
- P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. https://doi.org/10.1090/cbms/065
- P. H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. https://doi.org/10.1007/BF00946631
- W. Smith and D. A. Stegenga, Holder domains and Poincare domains, Trans. Amer. Math. Soc. 319 (1990), no. 1, 67-100. https://doi.org/10.2307/2001337
- X. Wang, On concentration of positive bound states of nonlinear Schrodinger equations, Comm. Math. Phys. 153 (1993), no. 2, 229-244. http://projecteuclid.org/euclid.cmp/1104252679 https://doi.org/10.1007/BF02096642