• Title/Summary/Keyword: Creepage distance

Search Result 7, Processing Time 0.023 seconds

Behavior of Surface Flashover Depending on Shape and Gap Distance of End Shield in Vacuum Interrupter (진공인터럽터 내부 End Shield형상과 갭거리에 따른 연면방전거동)

  • Yoon, Jae-Hun;Lim, Kee-Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.169-173
    • /
    • 2010
  • Because of power consumption increase, global warming, and limitation of installation, not only high reliability and interruption capability but also compact and light power apparatuses are needed. In this paper, E field calculation and experiment were processed to identify the influence of the shape of end shield and gap distance. It is expected that the results of FEM simulation and experiments could be the basic data to develop VI. the results of FEM simulation and experiments are as following. Firstly, maximum E fields were compared by means of finite element method as a function of the shape of end shield. 3 types of models were used to analyze maximum E field of each model and the influence of shape of shield could be identified. As a result, proposed L type shield could reduce the maximum E field by 20%. Secondly, the influence of the gap distance between end shields on E field was analyzed. As the gap distance become short the gap distance between inner walls of ceramic also become short. And the maximum E field concentrated on inner wall of ceramic finally increased. Thirdly, the experiment was conducted by fabricating each prototype. As a result, no creepage occurred in shieldless model. In other words, creepage occurred in the shield-installed models. And creepage inception voltages were different from each other because of the difference of maximum E field. Fourthly, The equation that shows relation between calculated E field and measured creepage inception voltage was proposed as a result of FEM analysis and experiment. It is concluded that when designing VI this equation could be important data to reduce time and cost by identifying indirectly the optimal gap distance and the shape of shield required to prevent creepage.

Creepage Distance Measurement Using Binocular Stereo Vision on Hot-line for High Voltage Insulator

  • He, Wenjun;Wang, Jiake;Fu, Yuegang
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.348-355
    • /
    • 2018
  • How to measure the creepage distance of an insulator quickly and accurately is a problem for the power industry at present, and the noticeable concern is that the high voltage insulation equipment cannot be measured online in the charged state. In view of this situation, we develop an on-line measurement system of creepage distance for high voltage insulators based on binocular stereo vision. We have proposed a method of generating linear structured light using a conical off-axis mirror. The feasibility and effect of two ways to solve the interference problem of strong sunlight have been discussed, one way is to use bandpass filters to enhance the contrast ratio of linear structured light in the images, and the other way is to process the images with adaptive threshold segmentation and feature point extraction. After the system is calibrated, we tested the measurement error of the on-line measurement system with a composite insulator sample. Experimental results show that the maximum relative error is 1.45% and the average relative error is 0.69%, which satisfies the task requirement of not more than 5% of the maximum relative error.

An Investigation on Surface Flashover Characteristics of FRP in Several Insulation Gases for the Spacer of Cryogenic Bushing

  • Hwang, Jae-Sang;Shin, Woo-Ju;Seong, Jae-Kyu;Lee, Jong-Geon;Lee, Bang-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.20-23
    • /
    • 2012
  • Superconducting equipment has been actively investigated for securing the environment and energy technology (ET) in various parts of the world. Despite these movements, a high voltage cryogenic bushing, which plays an important role of interconnection between the electric power systems and superconducting devices, has not been fully developed due to severe insulation requirements. A gas insulated cryogenic bushing has been investigated as one of our projects since 2010. As a basic step to obtain the design parameters for cryogenic bushing, we focused on the surface flashover characteristics of glass fiber reinforced plastic (FRP) in several insulation gases. For the surface flashover tests, several insulation gases including $SF_6$, $CF_4$ and $N_2$ gas were prepared. Various length of FRP specimens were fabricated in order to obtain the fundamental data for creepage distance of FRP. The first specimen group was from 2 mm to 10 mm with 2 mm intervals and the second specimen group was from 20 mm to 100 mm with 20 mm intervals. And the gas pressure was varied from 1 bar to 4 bar. An AC overvoltage test and a lightning impulse test were performed. Then the experimental results of surface flashover were obtained and analyzed. Based on these results, it would be possible to design the optimum creepage distance of FRP in a cryogenic bushing.

Experimental Setup for Dynamic Analysis and Verification of Model Trains (모형기차의 동역학 해석 검증을 위한 실험장치 구성)

  • Tak, Tae-Oh;Kim, Suc-Tae
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.95-103
    • /
    • 2000
  • A model trains must have similitude with its original model not only in shape but also in motion. Motion characteristics of a model train under considerations are maximum velocity in straight and circular tracks and stopping distance. Equations of motions are derived to obtain maximum speed and stopping distance based on the Newton's Second Law and the energy principal. To accurately predict traction and resistance force between wheel and rail. wheel slip, or creepage, is taken into consideration. To verify the equations of motion, various experiments have been carried out including measurement of gear efficiency, location of mass center, rolling resistance force, traction force, slip, maximum velocity and stopping distance. This paper addresses how the experiments are setup and carried out in detail. Also the results of experiments are compared with the analytical prediction, which showed good agreements with each other.

  • PDF

Air Clearance and Creepage distance design method of the ${\pm}80kV$ 60MW HVDC System for the Valve Hall and the DC/AC Switch Yard (${\pm}80kV$ 60MW HVDC System의 Valve Hall 및 DC/AC Switch Yard를 위한 최소 절연거리 설계 방법)

  • Jo, J.S.;Kwon, J.B.;Lee, U.K.;Chung, Y.H.;Na, Hyeon-Guk;Lee, D.J.;Moon, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.392-393
    • /
    • 2011
  • 본 논문에서는 제주 한림 풍력발전소와 한림 변전소간에 구축할 예정인 ${\pm}80kV$ 60MW HVDC 시스템의 절연 설계를 위해, 각 구성품의 절연 등급을 수 계산으로 설계하였다. 계산된 절연등급을 기반으로 한림 변전소와 한림 풍력 단지에 설치되는 HVDC 기기들의 최소 절연거리를 IEC 규격에 맞게 설계하였다. AC/DC 기기의 특정 전압 등급에 견딜 수 있는 최소 거리는 실제 시스템 설치 시 반영함으로써 검증하였다.

  • PDF

Characteristices for the Electric Field of Composite Insulator Silicone Shed (Composite Insulator silicone shed 전계특성)

  • Jang, Yoon-Ki;Choi, Sung-Man;Chung, Young-Soo;Lee, Dong-Woen;Kim, Jung-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.99-100
    • /
    • 2008
  • Composite insulators are rapidly replacing their porcelain counterparts in electrical substation applications. The composite insulator provide technical and safety ad vantages over other types of insulator. These insulators consist of a FRP(Fiber-reinforced polymer), with two metal flanges and silicone rubber. In this paper, we have investigated the influence of electric field different shaped silicone shed under $SF_6$ gas. As a result, shape of silicone rubber does not effected a electric field. However, the shape of shed can be decided the creepage distance.

  • PDF

A Study Vertical Surface Discharge Characteristics of the Shape Change of the Solid Insulation with the Same Creepage Distance of Dry-Air (Dry-Air 중의 동일 연면거리를 가진 고체절연물의 형상 변화에 따른 수직연면방전 특성 연구)

  • Jeon, Jong-Cheul;Choi, Byung-Ju;Bae, Sung-woo;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.72-78
    • /
    • 2016
  • In terms of power components which use environmentally-friendly dry air that can substitute SF6, there have been studies on the electrical properties of the solid insulation "spacer" for the purpose of securing dielectric strength as they become smaller. This study laminated solid insulation to keep the creeping distance the same in the dry air and investigated vertical surface discharge characteristics by shape. The three sheets of disk-type solid insulation(Bakelite) were laminated in a manner to keep the creeping distance the same. The lamination was categorized as follows: "Type A" in which the insulations with the same disk diameter were laminated; "Type B" in which the insulations whose middle disk diameter was large were laminated; and "Type C" in which the ones whose middle disk diameter was small were laminated. For a vertical surface discharge experiment, dry air was injected into the test chamber depending on the shape of the laminated solid insulation, and chamber pressure was adjusted in a range of 0.1-0.6MPa. As volume decreased, surface discharging voltage by unit volume increased. This was because of dielectric polarization according to the structural characteristics of the shape of lamination. The highest surface discharging voltage was found in "Type C."