• 제목/요약/키워드: Creep and shrinkage

검색결과 308건 처리시간 0.029초

교량 확폭시 콘크리트의 건조수축 및 크리이프의 영향에 관한 실험적 연구 및 해석 (A Computational Analysis and An Experimental Study on the effects of Concrete Shrinkage and Creep in Bridge Widening)

  • 장동일;조병완;홍성욱
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.163-170
    • /
    • 1994
  • The widening of bridges under traffic condition brings to many problems. One of these is the internal stresses caused by different creep and shrinkage behavior of the existing bridge and that of the widened Bridge. This study was conducted to examine the effects of different creep and shrinkage behaviors between concretes. The results are as follows; Comparing the computational analysis results with the experimental study, it is shown that finite element analysis used in this study was well accorded with experimental results. And considering the shrinkage effects in widened bridges, joining-construction using the expanding concrete between the existing and widened bridge after at least three months from the day of completion of new bridge, is recommended.

  • PDF

유동화 콘크리트의 건조수축 및 크리프 변형특성에 관한 연구 (A Study on the Properties of Shrinkage and Creep Deformation in Superplasticized Concrete)

  • 박승범;임창덕
    • 전산구조공학
    • /
    • 제1권2호
    • /
    • pp.131-142
    • /
    • 1988
  • 유동화 콘크리트의 건조수축 및 크리프 특성을 검토하기 위하여 유동화제 2종류와 일반감수제 1종류를 사용하여 재하 하중조건(압축강도의 15% 및 30%)별, 양생조건별로 압축강도 및 건조수축을 측정하고 기건상태하의 크리프 및 크리프변형을 측정하여 유동화 콘크리트의 장기 변형특성을 검토하였다. 그 결과, 유동화 콘크리트는 보통 콘크리트에 비하여 재령 28일의 압축강도는 약 22% 증가하였고, 건조수축은 15% 감소하였으며, 크리프변형은 약 11% 감소하였고 28일간의 크리프회복은 보통 콘크리트에 비하여 작음을 알 수 있었다. 따라서 사용목적에 따른 적절한 유동화제의 선택과 적정량의 유동화제 사용은 건조수축 및 크리프변형에 효과적인 것으로 판단된다.

  • PDF

Shrinkage analysis of reinforced concrete floors using shrinkage-adjusted elasticity modulus

  • Au, F.T.K.;Liu, C.H.;Lee, P.K.K.
    • Computers and Concrete
    • /
    • 제4권6호
    • /
    • pp.437-456
    • /
    • 2007
  • The shrinkage of large reinforced concrete floors often gives rise to cracking problems. To identify the problematic areas, shrinkage movement analysis is often carried out by finite element method with proper creep and shrinkage models using step-by-step time integration. However as the full stress history prior to the time interval considered is necessary, with the increase in the number of time intervals used, the amount of computations increases dramatically. Therefore a new method using the shrinkage-adjusted elasticity modulus (SAEM) is introduced so that analysis can be carried out using one single step. Examples are presented to demonstrate its usefulness.

민감도 해석을 통한 크리프 계수 오차 보정 (Adjustment of Creep Coefficient Using Sensitivity Analysis)

  • 박종범;박봉식;장승필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.293-296
    • /
    • 2008
  • 콘크리트의 크리프와 건조수축은 재료 자체의 변동성과 모델의 불확실성 때문에 매우 복잡한 현상이다. 콘크리트 구조물의 장기거동을 예측할 수 있는 크리프와 건조수축 모델은 여러 가지 환경요인을 고려한 설계기준(Design Code)으로부터 얻을 수 있다. 하지만 같은 환경하에서 설계기준으로부터 구한 모델은 각기 다르기도 하다. 실제 콘크리트의 특성을 구하기 위해 장기간 실험을 통하기도 하지만 이는 실제 건설 현장에서는 쉬운 일이 아니고 이 또한 실구조물에서 다를 수 있다. 설계과정에서의 가정한 물성과 실제 물성의 차이가 있다면, 실제 구조물의 장기 거동을 정확히 예측하지 못하게 된다. 따라서 시공중이나 공용중 시간거동 예측을 정확히 하기 위해서는 실제 교량에서 시간의존거동에 미치는 요소 중 크리프 특성이 적절하게 주어졌는지에 대한 검토가 필요하다. 본 논문에서는 교량의 시간에 따른 거동을 측정한 자료가 주어졌을 때크 리프 민감도 해석을 수행하여 콘크리트의 크리프 계수를 예측하였다.

  • PDF

Long-term deflection prediction in steel-concrete composite beams

  • Lou, Tiejiong;Wu, Sishun;Karavasilis, Theodore L.;Chen, Bo
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.21-33
    • /
    • 2021
  • This paper aims to improve the current state-of-the-art in long-term deflection prediction in steel-concrete composite beams. The efficiency of a time-dependent finite element model based on linear creep theory is verified with available experimental data. A parametric numerical study is then carried out, which focuses on the effects of concrete creep and/or shrinkage, ultimate shrinkage strain and reinforcing bars in the slab. The study shows that the long-term deformations in composite beams are dominated by concrete shrinkage and that a higher area of reinforcing bars leads to lower long-term deformations and steel stresses. The AISC model appears to overestimate the shrinkage-induced deflection. A modified ACI equation is proposed to quantify time-dependent deflections in composite beams. In particular, a modified reduction factor reflecting the influence of reinforcing bars and a coefficient reflecting the influence of ultimate shrinkage are introduced in the proposed equation. The long-term deflections predicted by this equation and the results of extensive numerical analyses are found to be in good agreement.

Cracking of Fiber-Reinforced Self-Compacting Concrete due to Restrained Shrinkage

  • Kwon, Seung-Hee;Ferron, Raissa P.;Akkaya, Yilmaz;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.3-9
    • /
    • 2007
  • Fiber-reinforced self-compacting concrete (FRSCC) is a new type of concrete mix that can mitigate two opposing weaknesses: poor workability in fiber-reinforced concrete and cracking resistance in plain SCC concrete. This study focused on early-age cracking of FRSCC due to restrained drying shrinkage, one of the most common causes of cracking. In order to investigate the effect of fiber on shrinkage cracking of FRSCC, ring shrinkage tests were performed for polypropylene and steel fiber-reinforced SCC. In addition, finite element analyses for those specimens were carried out considering drying shrinkage based on moisture diffusion, creep, cracking resistance of concrete, and the effect of fiber. The analysis results were verified via a comparison between the measured and calculated crack width. From the test and analysis results, the effectiveness of fiber with respect to reducing cracking was confirmed and some salient features on the shrinkage cracking of FRSCC were obtained.

고강도 콘크리트 부재의 크리프 및 건조수축 특성에 관한 실험적 연구 (An Experimental Study on the Creep and Shrinkage Behavior of High-Strength Concrete Members)

  • 오병환;엄주용;유승운;차수원;임동환
    • 대한토목학회논문집
    • /
    • 제13권2호
    • /
    • pp.31-40
    • /
    • 1993
  • 콘크리트가 구조용 재료로써 활용되기 시작한 이래 크리프와 건조수축의 특성 규명을 위한 연구는 많은 연구자들에 의해 수행되어 왔다. 그러나 그 거동은 아직도 명확히 규명된 것은 아니며 이는 고강도 콘크리트의 경우 더욱 그러하다. 따라서 본 연구는 현재 국내에서 그 사용이 늘어나고 있는 고강도 콘크리트의 크리프 및 건조수축특성에 대한 기본적인 자료를 제공하기 위해 수행되었다. 본 연구의 주된 변수는 고강도 콘크리트, 배근유무, 철근비, 건조조건, 재하재령 등이며, 이들의 영향에 대한 크리프 및 건조수축특성을 규명하였다. 이것은 앞으로 고강도콘크리트구조물 설계에 중요한 자료가 될 것으로 사료된다.

  • PDF

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

크리프 및 건조수축을 고려한 PSC 교량의 시간의존해석 (Time-Dependent Analysis of Prestress Concrete Bridge Considering Creep and Shrinkage)

  • 박문호;박순응;김진규;박정활;김복남;이승엽
    • 한국산업융합학회 논문집
    • /
    • 제13권3호
    • /
    • pp.125-131
    • /
    • 2010
  • This study is to give more accurate information by performing the time depend ent analysis to take into account the long-term losses of precast PSC concrete bridge and analyzing the second stress, final camber and cross section stress of precast PSC caused by creep and drying shrinkage. As time goes by, the stress and deformation in the cross section vary continuously by the influence of creep and drying shrinkage. Due to this, the stress redistribution occurs and the internal force variation also happens along the point on the same cross section and with the passage of time.

  • PDF

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.