DOI QR코드

DOI QR Code

Shrinkage analysis of reinforced concrete floors using shrinkage-adjusted elasticity modulus

  • Au, F.T.K. (Department of Civil Engineering, The University of Hong Kong) ;
  • Liu, C.H. (Department of Civil Engineering, The University of Hong Kong) ;
  • Lee, P.K.K. (Department of Civil Engineering, The University of Hong Kong)
  • Received : 2007.03.30
  • Accepted : 2007.11.30
  • Published : 2007.12.25

Abstract

The shrinkage of large reinforced concrete floors often gives rise to cracking problems. To identify the problematic areas, shrinkage movement analysis is often carried out by finite element method with proper creep and shrinkage models using step-by-step time integration. However as the full stress history prior to the time interval considered is necessary, with the increase in the number of time intervals used, the amount of computations increases dramatically. Therefore a new method using the shrinkage-adjusted elasticity modulus (SAEM) is introduced so that analysis can be carried out using one single step. Examples are presented to demonstrate its usefulness.

Keywords

References

  1. Alexander, S. (2002a), "Understanding shrinkage and its effects: Part 1", Concrete, 36(9), 61-63.
  2. Alexander, S. (2002b), "Understanding shrinkage and its effects: Part 2", Concrete, 36(10), 38-41.
  3. Altoubat, S.A. and Lange, D.A. (2001), "Creep, shrinkage, and cracking of restrained concrete at early age", ACI Mater. J., 98(4), 323-331.
  4. Au, F. T. K., Liu, C. H. and Lee, P. K. K. (2007), "Creep and shrinkage analysis of reinforced concrete frames by history-adjusted and shrinkage-adjusted elasticity moduli", The Structural Design of Tall and Special Buildings (to appear).
  5. Bazant, Z. P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI J., 69(4), 212-219.
  6. Bazant, Z. P. (1982), "Mathematical models for creep and shrinkage of concrete", Creep and Shrinkage in Concrete Structure, John Wiley and Sons, New York, 163-256.
  7. Bazant, Z. P. (1988), "Material models for structural creep analysis", Mathematical Modeling of Creep and Shrinkage of Concrete, John Wiley and Sons, New York, 99-215.
  8. Bazant, Z. P. (2001), "Prediction of concrete creep and shrinkage: Past, present and future", Nuclear Eng. Design, 203(1), 27-38. https://doi.org/10.1016/S0029-5493(00)00299-5
  9. Comite Euro-International du Beton (1993), CEB-FIP Model Code for Concrete Structures (MC-90), Paris-London-Berlin.
  10. Cheung, Y. K. and Au, F. T. K. (1992), "Finite strip analysis of right box girder bridges using computed shape functions", Thin-Walled Struct., 13(4), 275-298. https://doi.org/10.1016/0263-8231(92)90025-R
  11. Cheung, Y. K. and Yeo, M. F. (1979), A Practical Introduction to Finite Element Analysis. Pitman, London.
  12. Cook, R. D., Malkus, D. S. and Plesha, M. E. (2002), Concepts and Applications of Finite Element Analysis, 4th Ed., John Wiley & Sons Press, New York.
  13. Dilger, W. H. and Neville, A. M. (1971), "A method of creep analysis of structural members", Designing for Effects of Creep Shrinkage Temperature in Concrete Structures, ACI Special Publication No. 27, 349-371.
  14. Ghali, A., Favre, R. and Elbadry, M. (2002), Concrete Structures: Stresses and Deformations, 3rd Ed., Spon Press, London.
  15. Gilbert, R. I. (1988), Time Effects in Concrete Structures, Amsterdam: Elsevier Science Publishers.
  16. Gilbert, R I. (1992), "Shrinkage cracking in fully-restrained concrete members", ACI Struct. J. 101(6), 840-845.
  17. Kim, H. S. and Cho, S. H. (2004), "Shrinkage stress analysis of concrete slabs with shrinkage strips in a multistory building", Comput. Struct., 82(15-16), 1143-1152. https://doi.org/10.1016/j.compstruc.2004.03.021
  18. Kim, H. and Cho, S. (2005), "Shrinkage stress analysis of concrete slab in multistorey building considering variation of restraint and stress relaxation due to creep", Structural Design of Tall and Special Buildings, 14(1), 47-58. https://doi.org/10.1002/tal.258
  19. Liu, C. H., Au, F. T. K. and Lee, P. K. K. (2006), "Estimation of shrinkage effects on reinforced concrete podiums", HKIE Transactions, 13(4), 33-43.
  20. Nejadi, S. and Gilbert, I. (2004), "Shrinkage cracking and crack control in restrained reinforced concrete members" ACI Struct. J., 101(6), 840-845.
  21. Trost, H. (1967), "Auswirkungen des Superpositionsprinzips auf Kriech-und Relaxation- Probleme bei Beton und Spannbeton", Beton-und Stahlbetonabu, 62(10), 230-238.
  22. Trost, H. (1967), "Auswirkungen des Superpositionsprinzips auf Kriech-und Relaxation- Probleme bei Beton und Spannbeton", Beton-und Stahlbetonabu, 62(11), 261-269.

Cited by

  1. Development of early age shrinkage stresses in reinforced concrete bridge decks vol.12, pp.4, 2008, https://doi.org/10.1007/s11043-008-9067-4
  2. Capturing the long-term dynamic properties of concrete cable-stayed bridges vol.57, 2013, https://doi.org/10.1016/j.engstruct.2013.10.007
  3. An Efficient Method for Time-Dependent Analysis of Composite Beams vol.14, 2011, https://doi.org/10.1016/j.proeng.2011.07.234
  4. Radial Basis Function Neural Network Models for Peak Stress and Strain in Plain Concrete under Triaxial Stress vol.22, pp.9, 2010, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000077
  5. Shrinkage movement analysis of reinforced concrete floors constructed in stages vol.6, pp.2, 2007, https://doi.org/10.12989/cac.2009.6.2.167
  6. Prediction of compressive strength of concrete using neural networks vol.10, pp.2, 2007, https://doi.org/10.12989/cac.2012.10.2.197
  7. A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars vol.20, pp.2, 2007, https://doi.org/10.12989/cac.2017.20.2.215