• 제목/요약/키워드: Cranes

검색결과 404건 처리시간 0.027초

컨테이너 터미널에서 블록의 레이아웃을 고려한 야드 크레인의 주기시간 모형 (Cycle Time Models for Yard Cranes Considering Block Layouts in Container Terminals)

  • 이병권;김갑환
    • 대한산업공학회지
    • /
    • 제33권1호
    • /
    • pp.110-125
    • /
    • 2007
  • Various different types of yard cranes are used in container terminals. Examples are rubber tired gantry cranes,rail mounted gantry cranes, overhead bridge cranes, dual rail-mounted gantry cranes, and automated stacking cranes. The kinematics and handling characteristics of these yard cranes are different from each other. Ttiis study analyses charactehstics of generic types of yard cranes which represent various yard cranes m practice Demg used in several types of block layouts, Considering specifications of yard cranes and block layouts, expected cycle times and variances of the cycle time are estimated for different handling activities.

Habitat Use of Cranes in Cheolwon Basin, Korea

  • Lee, Won-Shin;Rhim, Shin-Jae;Park, Chan-Ryul
    • The Korean Journal of Ecology
    • /
    • 제24권2호
    • /
    • pp.77-80
    • /
    • 2001
  • We investigated the habitat use of cranes, and suggested the proper way to protect and manage the cranes in Cheolwon Basin, which is the most important wintering ground of cranes in Korea. Field surveys were conducted in the wintering seasons from Nov. 1994 to Feb. 1995, and from Nov. 1997 to Feb. 1998. The habitat loss and environmental changes by the road construction and agricultural field rearrangement might have affected the distribution of the cranes. The distribution of cranes seemed to be related with the density of rice grains remained in rice paddies.

  • PDF

Cooperative control system of the floating cranes for the dual lifting

  • Nam, Mihee;Kim, Jinbeom;Lee, Jaechang;Kim, Daekyung;Lee, Donghyuk;Lee, Jangmyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.95-102
    • /
    • 2018
  • This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes are well-coordinated to add up the lift capabilities of both cranes without any loss such that virtually a single crane is lifting, maneuvering and unloading. Two main constraints for the dual lifting are as follows: First, two barges of floating cranes should be constrained as a rigid body not to cause a relative motion between two barges and main hooks of the two cranes should be controlled as main hooks of a single crane. In order words, it is necessary to develop the cooperative control of two floating cranes in order to sustain a center of gravity of the module and minimize the tilting angle during the lifting and unloading by the two floating cranes. Two floating cranes are handled as a master-slave system. The master crane is able to gather information about all working conditions and make a decision to control the individual hook speed, which communicates the slave crane by TCP/IP. The developed control system has been embedded in the real floating crane systems and the dual lifting has been demonstrated five times at SHI shipyard in 2015. The moving angles of the lifting module are analyzed and verified to be suitable for hoisting control. It is verified that the dual lifting can be applied for many heavier and wider blocks and modules to shorten the construction time of ships and off-shore platforms.

크레인의 정밀한 정지와 잔류진동 억제를 위한 개선된 입력 성형기법 (An Improved Input Shaping Method for Precise Stopping and Residual Vibration Reduction of Cranes)

  • 배규현;홍성욱
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.717-724
    • /
    • 2013
  • Industrial cranes are indispensable equipment in heavy industry. However, unwanted vibrations in cranes often cause accidents. Input shaping is widely accepted as a useful tool for removing residual vibration in cranes. A unity magnitude zero vibration (UMZV) input shaper is often used for cranes driven by on-off-type motors. However, although a UMZV input shaper minimizes residual vibration, the input shaper cannot prevent the crane from moving slightly further than expected from the original command. This paper describes an improved method of input shaping that can compensate for position inaccuracies, as well as remove the residual vibration of cranes. Experiments were performed to validate the proposed input-shaping method, illustrated through numerical simulations.

컨테이너 터미널에서 컨테이너 크레인의 하역능력 추정에 관한 시뮬레이션 연구 (A Simulation Study on Efficiency of Container Crane in Container Terminal)

  • 윤원영;최용석;송진영;양창호
    • 산업공학
    • /
    • 제14권1호
    • /
    • pp.67-78
    • /
    • 2001
  • This paper describes the simulation study which estimates the container crane efficiency in container terminal. In most simulation studies, it is assumed that container cranes are available at any time. Though the failures of container cranes don't occur often, they are very serious problems on terminal efficiency. As usual, the failures of container crane cause arrived ships to delay the departure time. In this study, a queueing simulation model for container terminal, which focuses on the failures of container cranes, is designed. The simulation approach appears to be the most appropriate one because it allows to avoid the usual exponential assumption on interarrivals of ships and service times of container cranes. Using the developed model, we tested the efficiency of container cranes considering failures with a real system size and performed the simulation experiment on real container terminal to validate the developed simulation model. The results of simulation experiment were analyzed using output statistics, which include the waiting times of vessels and yard tractors, the utilization for container cranes, and the berth occupancy rates.

  • PDF

Automatic Arrangement Algorithm for Tower Cranes Used in High-rise Apartment Buildings

  • Lim, Chae-Yeon;Kim, Sun-Kuk;Seo, Deok-Seok;Son, Ki-Young
    • 한국건축시공학회지
    • /
    • 제12권3호
    • /
    • pp.358-368
    • /
    • 2012
  • On most construction sites, the arrangement of tower cranes is decided by site engineers based on their own experience, which can cause cost overruns and delays in the lifting work. Although many researchers have conducted studies on tower crane arrangement using computer modeling and knowledge-based expert systems as well as mathematical models, no research has aimed to develop an algorithm to identify an optimum solution among several alternatives for installation areas of tower cranes satisfying the conditions of lifting work. The objective of this study is to develop an automatic arrangement algorithm for tower cranes used in high-rise apartment construction. First, as a new concept, a possible installation area of tower cranes was suggested. Second, after proposing several alternatives based on the installation points suggested in this study, an algorithm analyzing the economic feasibility of tower cranes was developed considering the rental, installation and removal costs. Third, a case study was conducted to prove the validity of the developed algorithm for selecting and installing an effective set of tower cranes at minimum cost.

산업용 크레인에서의 입력성형기법 응용 (Application of Input Shaping Method to Industrial Cranes)

  • 박상원;홍성욱
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1032-1039
    • /
    • 2011
  • This paper presents results of input shaping to industrial cranes. A brief theoretical background for input shaping is described. Several examples of input shaping application to sway regulation for industrial cranes are presented. The presented results show that input shaping is very useful for industrial cranes.

다중 양중장비와 자재 야적 위치의 최적 결정을 위한 모델 개발 (Optimization of Multiple Tower Cranes and Material Stockyards Layout)

  • 김경주;김경민;이상규
    • 한국건설관리학회논문집
    • /
    • 제10권6호
    • /
    • pp.127-134
    • /
    • 2009
  • 본 연구에서는 여러 대의 타워 크레인이 다양한 후보지점을 갖고, 자재 역시 다양한 야적 후좌지점을 가질 때 자재 운반 최적화를 지원하기 위한 유전자 알고리즘 기반의 모델을 제시하고자 한다. 대형 건축공사에서 타워 크레인의 위치와 자재 야적 위치의 변화는 자재 운반시간의 변화를 가져온다. 또한 여러 대의 타워 크레인을 사용하는 경우 각 자재의 운반에 어떠한 타워 크레인을 배정하느냐에 따라 작업의 효율성이 변화한다. 따라서 본 연구에서는 다중의 타워 크레인 설치 후보지, 여러 종류의 자재, 자재 야적 후보지점간의 다양하고 복잡한 상관관계를 다루기 위하여 유전자 알고리즘을 적용한 다중 양중장비 및 자재 야적 위치 최적화모델을 제시하였다. 또한, 제시된 모델을 사례에 적용하여 적용 과정을 예시하고 활용성을 검증하였다.

자동화 컨테이너크레인의 개방형 하이브리드 제어시스템에 관한 연구 (An Open-Architecture Hybrid Control System for Automated Container Cranes)

  • 홍경태;김성훈;오승민;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.510-517
    • /
    • 2005
  • In this paper, an open architecture control system for automated container cranes is investigated. The hardware architecture for automating cranes is first discussed. A standard reference model for cranes based upon the OSACA platform is proposed, in which three modules are suggested: hardware module, operating system module, and application software module. Finally, a hybrid control system combining deliberative and reactive controls for autonomous operations of the cranes is implemented.

천정 크레인의 모델링 및 위치제어 (The Modelling and Position Control of Overhead Cranes)

  • 이종규
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1919-1925
    • /
    • 2001
  • Overhead cranes consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. If objects are regarded as mass point, and the acceleration of hoisting motion for objects is neglected, analytical model of overhead cranes becomes a nonlinear model because the length of a rope changes. Equations of motion this model is derived of simultaneous differential equations fur motors and object. Positions of the model are controlled by optimal inputs which obtain from a nonlinear optimal control method. From the results of computer simulation, even if initial states of objects suing, it is founded that position of overhead cranes is controlled, and that swing of objects is suppressed.