• Title/Summary/Keyword: Crane systems

Search Result 245, Processing Time 0.037 seconds

Remote handling systems for the ISAC and ARIEL high-power fission and spallation ISOL target facilities at TRIUMF

  • Minor, Grant;Kapalka, Jason;Fisher, Chad;Paley, William;Chen, Kevin;Kinakin, Maxim;Earle, Isaac;Moss, Bevan;Bricault, Pierre;Gottberg, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1378-1389
    • /
    • 2021
  • TRIUMF, Canada's particle accelerator centre, is constructing a new high-power ISOL (Isotope Separation On-Line) facility called ARIEL (Advanced Rare IsotopE Laboratory). Thick porous targets will be bombarded with up to 48 kW of 480 MeV protons from TRIUMF's cyclotron, or up to 100 kW of 30 MeV electrons from a new e-linac, to produce short-lived radioisotopes for a variety of applications, including nuclear astrophysics, fundamental nuclear structure and nuclear medicine. For efficient release of radioisotopes, the targets are heated to temperatures approaching 2000 ℃, and are exposed to GSv/h level radiation fields resulting from intended fissions and spallations. Due to these conditions, the operational life for each target is only about five weeks, calling for frequent remote target exchanges to limit downtime. A few days after irradiation, the targets have a residual radiation field producing a dose rate on the order of 10 Sv/h at 1 m, requiring several years of decay prior to shipment to a national disposal facility. TRIUMF is installing new remote handling infrastructure dedicated to ARIEL, including hot cells and a remote handling crane. The system design applies learnings from multiple existing facilities, including CERN-ISOLDE, GANIL-SPIRAL II as well as TRIUMF's ISAC (Isotope Separator and ACcelerator).

Issues in offshore platform research - Part 1: Semi-submersibles

  • Sharma, R.;Kim, Tae-Wan;Sha, O.P.;Misra, S.C.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.155-170
    • /
    • 2010
  • Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor) or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

A Study On Optimized Design of Decision Support Systems for Container Terminal Operations (컨테이너 터미널 운영을 위한 의사결정시스템 설계의 최적화에 관한 연구)

  • Hong, Dong-Hee;Chung, Tae-Choong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.519-528
    • /
    • 2003
  • Container terminals need decisions in the course of daily-24 hour and 365 day - operations, and all these decisions are inter-related. The ultimate goal of Decision Support System is to minimize ship loading/unloading time, resources used to handle the workload, and congestion on the roads inside the terminal. It is also to make the best possible use of the storage space available. Therefore, the necessity of decision support tools are emphasized to enhance the operational efficiency of container shipping terminals more, because of limits and complexity of these decisions. So, in thia paper, we draw evaluation items for Decision Support Systems and suggest optimization strategy of evaluation items which have the greatest influence on Decision Support system, that is, yard stacking allocation, RTGC deployment among blocks, and YT allocation to QCs. We also estimate the efficiency of Decision Support System design by simulation using G2 language, comparing ship loading/unloading time.

Automatic Inspection of Reactor Vessel Welds using an Underwater Mobile Robot guided by a Laser Pointer

  • Kim, Jae-Hee;Lee, Jae-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1116-1120
    • /
    • 2004
  • In the nuclear power plant, there are several cylindrical vessels such as reactor vessel, pressuriser and so on. The vessels are usually constructed by welding large rolled plates, forged sections or nozzle pipes together. In order to assure the integrity of the vessel, these welds should be periodically inspected using sensors such as ultrasonic transducer or visual cameras. This inspection is usually conducted under water to minimize exposure to the radioactively contaminated vessel walls. The inspections have been performed by using a conventional inspection machine with a big structural sturdy column, however, it is so huge and heavy that maintenance and handling of the machine are extremely difficult. It requires much effort to transport the system to the site and also requires continuous use of the utility's polar crane to move the manipulator into the building and then onto the vessel. Setup beside the vessel requires a large volume of work preparation area and several shifts to complete. In order to resolve these problems, we have developed an underwater mobile robot guided by the laser pointer, and performed a series of experiments both in the mockup and in the real reactor vessel. This paper introduces our robotic inspection system and the laser guidance of the mobile robot as well as the results of the functional test.

  • PDF

3D Spreader Position Information by the CCD Cameras and the Laser Distance Measuring Unit for ATC

  • Bae, Dong-Suk;Lee, Jung-Jae;Lee, Bong-Ki;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1679-1684
    • /
    • 2004
  • This paper introduces a novel approach that can provide the three dimensional information on the movement of a spreader by using two CCD cameras and a laser distance sensor, which enables an ALS (Automatic Landing System) to be used for yard cranes at a harbor. So far a kind of 2D Laser scanner sensor or laser distance measuring units are used as corner detectors for the geometrical matching between the spreader and a container, which provides only 2D information which is not enough for an accurate and fast ALS system required presently. In addition to this deficiency in performance, the price for the system is too high to be adopted widely for the ALS. Therefore, to overcome these defects, a novel method to acquire the three dimensional information for the movement of a spreader including skew and sway angles is proposed using two CCD cameras and a laser distance sensor. To show the efficiency of proposed algorithm, real experiments are performed to show the accuracy improvement in distance measurement by fusing the sensory information of CCD camera and laser distance sensor.

  • PDF

Technical Survey of Highly Efficient Cargo Handling System (고효율 하역장비의 기술동향)

  • Park, Kyoung-Taik;Kim, Kyung-Han;Kim, Doo-Hyung;Cho, Gyu-Baek;Kim, Han-Me
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.276-277
    • /
    • 2010
  • This paper deals with energy storage system for saving the energy of RTGC(rubber tired gantry crane). Advantage and disadvantage of battery, super-capacitor, and flywheel as an energy storage system were surveyed. Even if a flywheel energy storage system includes some problems such as manufacturing technique and high price, it is surveyed with a promising energy storage system In addition, RTGCs using battery or flywheel as the energy storage system were quantitatively presented through a survey of literatures. It was found that the both RTGC with those systems can reduced the waste of energy.

  • PDF

Establishing Methodology for Simulation-based Ship Design and Construction Using Virtual Manufacturing Technologies (가상생산기술을 이용한 시뮬레이션 기반의 선박설계 및 생산체계의 수립)

  • Kim, Hong-Tae;Lee, Jong-Gap;Hwang, Kyu-Ok;Jang, Dong-Sik
    • IE interfaces
    • /
    • v.15 no.3
    • /
    • pp.230-240
    • /
    • 2002
  • Information technologies centered on the internet in the area of shipbuilding and marine engineering further incur the needs to increase the flexibility of the organization, the dispersion of work process, and the use of out sourcing, as well as the globalization of related market. In near future, electronic commerce and concurrent engineering based on CALS/EC and the Internet will be an integral part of the environment and upon these changes, ship design and construction will become a computer supported cooperative work of many dispersed and specialized groups. As the means of active response to these environmental changes, many new concepts such as digital shipbuilding, virtual shipyard, and simulation based design are appearing. In this paper, the concept and current status of digital manufacturing in general manufacturing industry will be reviewed. Then, related technologies, area of application and methods of digital manufacturing in shipbuilding and marine industries are presented. In addition, virtual assembly simulation system for shipbuilding(VASSS), a tool for crane operability and block erection simulation in virtual dock based on 3D product model, will be introduced.

Position Detection Algorithm for Auto-Landing Containers by Laser-Sensor, Part II: 2-D Measurement (컨테이너의 자동랜딩을 위한 레이저센서 기반의 절대위치 검출 알고리즘: 2차원 측정 (Part II))

  • Hong, Keum-Shik;Lim, Sung-Jin;Kang, Min-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.55-60
    • /
    • 2007
  • In contrast to the method in Part I, which is considered to be the general approach, Part II pursues a closed-form solution. However, this closed-form solution is available only in the 2D situation under the assumption that the moving object is restricted to a 2D space, and also requires the use of only two laser-slit sensors. Since the motion of the container loaded on top of an AGV is restricted to a plane parallel to the ground, it can be considered a 2D motion. As a simple method, but with a high cost, the use of a laser scanner is also discussed. Since the approach in Part I already uses three laser-slit sensors, it is desirable to use the schemes presented in Part II for supplementary purposes.

Robust control by universal learning network

  • Ohbayashi, Masanao;Hirasawa, Kotaro;Murata, Junichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.123-126
    • /
    • 1995
  • Characteristics of control system design using Universal Learning Network (U.L.N.) are that a system to be controlled and a controller are both constructed by U.L.N. and that the controller is best tuned through learning. U.L.N has the same generalization ability as N.N.. So the controller constructed by U.L.N. is able to control the system in a favorable way under the condition different from the condition of the control system in learning stage. But stability can not be realized sufficiently. In this paper, we propose a robust control method using U.L.N. and second order derivatives of U.L.N.. The proposed method can realize better performance and robustness than the commonly used Neural Network. Robust control considered here is defined as follows. Even though initial values of node outputs change from those in learning, the control system is able to reduce its influence to other node outputs and can control the system in a preferable way as in the case of no variation. In order to realize such robust control, a new term concerning the variation is added to a usual criterion function. And parameter variables are adjusted so as to minimize the above mentioned criterion function using the second order derivatives of criterion function with respect to the parameters. Finally it is shown that the controller constricted by the proposed method works in an effective way through a simulation study of a nonlinear crane system.

  • PDF

Coupled Dynamic Simulation of a Tug-Towline-Towed Barge based on the Multiple Element Model of Towline

  • Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.707-714
    • /
    • 2012
  • Recently, tug boats are widely used for towing a barge which transports building materials, a large block of a ship, offshore crane, and so on. In order to simulate the dynamics of the coupled towing system correctly, the dynamics of the towline should be well modeled. In this paper, the towline was modeled as the multiple finite elements, and each element was assumed as a rigid cylinder which moves in five degrees of freedom except roll. The external tension and its moment acting on each element of the towline were modeled depending on the position vector's direction. Tugboat's motion was simulated in six degrees of freedom where wave and current effects were included, and towed barge was assumed to move in the horizontal plane only. In order to confirm the mathematical models of the coupled towing systems, standard maneuvering trials such as course changing maneuver, turning circle test and zig-zag test were simulated. In addition, the same trials were simulated when the external disturbances like wave and current exist. As the result, it is supposed that the results might be qualitatively reasonable.