• Title/Summary/Keyword: Crack-Tip

Search Result 754, Processing Time 0.031 seconds

Microscopic fracture criterion of crack growth initiation (연성 균열성장 개시의 미시적 파괴조건)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.740-745
    • /
    • 1987
  • For the prediction of the crack growth initiation from a blunt notch or a precrack in a prestrained material under plane strain tension and small-scale yielding conditions, a microscopic fracture criterion is proposed in terms of the crack tip opening displacement(COD) needed for the attainment of fracture strain at a microstructural distance. Smooth blunting of a crack tip with an initial root radius is assumed, and strain distributions on the crack-line axis are calculated at each deformation stage until the distributions against an original distance normalized to the COD are insensitive to an initial root radius. This case of no initial-root-radius effect is taken as for a sharp crack tip, on which the criterion is applied to determine the characteristic length of material from a critical COD for a fatigue-precracked specimen. The predicted COD at the fracture initiation from a crack with an initial root radius or a prestraining shows reasonable agreement with experimental values.

A study on the elastic-plastic analysis and fracture behavior of pressure vessel (내외압을 받는 압력용기의 탄소성 해석과 파괴거동에 대한 고찰)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1988
  • This paper reports on the elatic-plastic analysis and fracture behavior of cylinder with outer surface crack which is under external or internal pressure. For the studuty of crack length effects in cylinder, ratios of crack lengths to finite thickness (a/t) are dertermined 0.3, 0.4, 0.5. For the study of curvature effects in cylinders, ratios of mean diameter to finite thicknees (Rm/t) are determined 10.0, 15.0, 20.0. Analysis is conduceted using the theory of fracture mechanics and two dimensional finite element solution assuming the axi-symmetrical plane strain conditon. Main results of this study are as follows. 1) It is known from this paper that elastic-plastic strain is initiated near crack tip and enlarged between crack tip and inner side of cylinder. 2) $K_{1}$ of cylinder under external or internal pressure is evaluated memebrane stress .root..pi.* crack length. The results of this study are inclined to Lomacky's results and Kobayshi's result. 3) Distribution of stress near crack tip is looked higher than of other zone, as crack length of equal model is longer, and as diameter of cylinder is longer. 4) When other conditions are equal, displacemenet near crack tip is looked duller, as length is longer.

  • PDF

A Study on Dynamic Crack-Tip Fields in a Strain Softening Material

  • Jang, Seok-Ki;Xiankui Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.494-502
    • /
    • 2003
  • The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening material is investigated under plane strain conditions. The material is assumed to be incompressible and its deformation obeys the $J_2$ flow theory of plasticity. A power-law stress-strain relation with strain softening is adopted to account for the damage behavior of materials near the dynamic crack tip. By assuming that the stresses and strain have the same singularity at the crack tip. this paper obtains a fully continuous dynamic crack-tip field in the damage region. Results show that the stress and strain components the same logarithmic singularity of (In(R/r))$\delta$, and the angular variations of filed quantities are identical to those corresponding to the dynamic cracks in the elastic-perfectly plastic material.

Influence of Tip mass on Dynamic Behavior of Cracked Cantilever Pipe Conveying Fluid with Moving Mass

  • Yoon Han-Ik;Son In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1731-1741
    • /
    • 2005
  • In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified.

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method (효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials (횡방향으로 등방성인 재료에서 균열선단 크리프 변형 거동)

  • Ma, Young-Wha;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1455-1463
    • /
    • 2009
  • Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-$2^{nd}$ creep, which elastic modulus ( E ), Poisson's ratio ( ${\nu}$ ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials.

Specimen Thickness and Crack Depth Effects on J Testing and Crack Tip Constraint for Non-standard Specimen (시편두께 및 균열깊이 영향을 고려한 비표준시편의 J 시험법 및 구속효과의 정량화)

  • Kim, Jin-Su;Cho, Soo-Man;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1531-1538
    • /
    • 2003
  • This paper compiles solutions of plastic $\eta$ factors and crack tip stress triaxialites for standard and nonstandard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental J estimation than that of the LLD, for all cases considered in the present work. Moreover, the J estimation based on the load-CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing specimen with any thickness. The effects of in-plane and out-of-plane constraint on the crack tip stress triaxiality are also quantified, so that when experimental J value is estimated according to the procedure recommended in this paper, the corresponding crack tip stress triaxiality can be estimated. Moreover, it is found that the out-of-plane constraint effect is related to the in-plane constraint effect.

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Crack Resistance Behavior Using Digital Image Correlation and Crack Tip Opening Angle on Particulate Reinforced Composite (디지털 화상관련법 및 균열선단열림각도를 이용한 입자강화 복합재료의 균열저항거동)

  • Na, Seong Hyeon;Lee, Jeong Won;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1021-1026
    • /
    • 2016
  • In this study, crack resistance is evaluated by the crack tip opening angle (CTOA) using a wedge splitting test (WST) on a viscoelastic particulate reinforced composite based on an HTPB binder. Generally, CTOA, as a function of crack extension, is used in order to determinate fracture resistance and has a steady state relative angle. Digital image correlation (DIC) is used to measure the crack tip opening displacement (CTOD) and crack extension for the critical crack tip opening angle (CTOAc). In these results, the CTOAc value of a particulate reinforced composite tends to approach a constant angle after a small amount of crack extension. The CTOAc value increases with decreasing temperature, from $50^{\circ}C$ to $-40^{\circ}C$. These CTOAc values may be used to measure fracture mechanics parameters for particulate reinforced composite.