• 제목/요약/키워드: Crack tip stress

검색결과 494건 처리시간 0.022초

취성소재 연삭마멸에서의 측면균열에 관한 연구 (Lateral Crack in Abrasive Wear of Brittle Solids)

  • 안유민;박상신;최상현
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.46-51
    • /
    • 1999
  • An analytical model about lateral crack occurring in abrasive wear of brittle solids is developed. Stress field around the lateral crack and stress intensity factor at the crack tip are analytically modeled. Abrasive wear by abrasive particle is experimentally studied. In soda-lime glass, it is observed that chipping by lateral crack occurs and produces the greatest material removal when normal load applied by the abrasive particle is about 1.5∼3.0 N. The prediction of lateral crack length from the model is compared with the experimentally measured length in soda-lime glass.

An analysis of an elastic solid incorporating a crack under the influences of surface effects in plane & anti-plane deformations

  • Kim, Chun Il
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.123-137
    • /
    • 2011
  • We review a series of crack problems arising in the general deformations of a linearly elastic solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of surface effects are taken into account. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane (Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the corresponding stress fields exhibit strong dependency on the size of crack.

등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석 (Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data)

  • 백태현;첸레이
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

경계요소법을 이용한 균열선단 원공의 영향 평가 (The Effect evaluation of the hole near a crack tip by Boundary Element Method)

  • 이대영;김성재
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.434-439
    • /
    • 2000
  • In this paper, in order to study the geometric factor effect of a circular hole near a crack tip in a semi-infinite plate, the Dimensionless Stress Intensity Factor, $F(=\frac K {\sigma {\sqrt{\pi a}}})$ is analyzed at the crack tip using a two Dimensional Boundary Element Method (BEM) program which is known as superior in Fracture Mechanics. Kelvin's solution was used as a fundamental solution in BEM analysis and displacement extrapolation method was used to determine Stress Intensity Factor.

  • PDF

면외변형하의 이방성 띠판에 대한 동적계면균열 (Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Out-of-Plane Deformation)

  • 박재완;최성렬
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.949-958
    • /
    • 2001
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strips under out-of-plane clamped displacements is analyzed. Using Fourier integral transform the problem is formulated and the Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. Using the near tip fields of stresses and displacements, the dynamic energy release rate is also obtained as a form of the stress intensiy factor.

3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM

  • Jamal-Omidi, Majid;Falah, Mehdi;Taherifar, Davood
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.525-539
    • /
    • 2014
  • Bonded composite-patch repair has been widely used to restore or extend the service life of damaged structures due to its effectiveness as a mechanical repair technique. In this paper using extended finite element method (XFEM), three-dimensional crack models are developed to examine the fracture behavior of centrally cracked aluminum plates repaired with single and double sided composite patches. Stress intensity factor (SIF) at the crack tip is used as the fracture criterion. In this regard, the effects of the crack lengths, patch materials, orientation of plies, adhesive and patch thickness are examined to estimate the SIF of the repaired plate and the repair performance. The obtained results show that composite patches have significant effect on reduction of the SIF at the crack tip. It is also proved that using double symmetric repair, in comparison to single one, reduces considerably SIF at the crack tip. Hence, the residual strength can be improved significantly as well as fatigue life of the structure. Investigation of ply orientation effects shows SIF increase as the ply orientation is changed from $0^{\circ}$ (perpendicular to the advancing crack) to $90^{\circ}$ (parallel to the crack line). However, the effectiveness of the ply orientation depends on the loading direction and the crack direction.

끝단 집중질량과 크랙을 가진 외팔보의 진동 해석 (Vibration Analysis of Cantilever Beams Having a Concentrated Tip Mass and a Crack)

  • 김경호;엄승만;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1360-1365
    • /
    • 2006
  • In this paper the vibration analysis of cantilever beams having a concentrated tip mass and an open crack are performed. The influences of a concentrated tip mass, the crack depth, and the crack position on the natural frequencies of the cracked cantilever beam are investigated by a numerical method. The cracked cantilever beam is modeled based on the Euler-Bernoulli beam theory. The flexibility due to crack is calculated using a fracture mechanics theory. The crack is assumed to be opened during the vibrations. The results obtained by the present method were compared with experimental results to verify the theory. As inspected, as the crack depth and the concentrated tip mass increase, the natural frequencies of the beam decrease. In general, the natural frequencies of the cantilever beam are more sensitive to the depth of the crack than the position of the crack.

  • PDF

밀도변화가 직교이방성함수구배재료에서 전파하는 모드 III 균열선단의 응력 및 변위장에 미치는 영향 (Influence of Density Variation on Stress and Displacement Fields at a Propagating Mode-III Crack Tip in Orthotropic Functionally Graded Materials)

  • 이광호
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1051-1061
    • /
    • 2011
  • 밀도의 변화가 직교이방성 함수구배재료에서 전파하는 모드 III 균열선단부근의 응력 및 변위장에 미치는 영향에 대하여 연구하였다. 본 연구에서 균열은 물성치의 구배방향과 수직하여 전파하며 다음과 같은 3가지 종류의 함수구배재료에서 밀도변화가 균열선단의 응력장 및 변위장에 미치는 영향에 대하여 연구하였다. (1) 탄성변화 없이 밀도만 변화하는 경우 (2) 밀도의 변화방향과 탄성변화방향이 서로 반대인 경우 (3) 밀도의 변화방향과 탄성변화방향이 동일한 경우이다. 이와 같은 경우에 대한 연구를 위하여 균열의 응력장 및 변위장이 개발되었으며 또한 전파하는 균열에 대한 동적응력확대계수에 대하여도 연구하였다. 균열전파속도가 느린 경우에는 밀도의 변화가 균열선단부근의 응력 및 변위장에 미치는 영향은 미미하나 균열전파속도가 빠른 경우에는 그 영향은 매우 크다.

The calculation of stress intensity factors by the surface integral method

  • Jin, Chi-Sub;Jang, Heui-Suk;Choi, Hyun-Tae
    • Structural Engineering and Mechanics
    • /
    • 제3권6호
    • /
    • pp.541-553
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by using the surface integral defined around the crack tip of the structure. In this work, the integral method is derived naturally from the standard path integral J. But the use of the surface integral is also extended to the case where body forces act. Computer program for obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length at the crack tip/crack length) is about 25 percent, relatively accurate $K_I$ and K_{II}$ values can be obtained for the outer integral radius ranging from 1/3 to 1 of the crack length and for inner one zero.

가상균열 모델을 이용한 피로균열 진전 해석 (Analysis of fatigue crack growth using fictitious crack model)

  • 양승용;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.79-84
    • /
    • 2003
  • A fictitious crack model was used to analyze fatigue crack growth under the influence of residual stress. In the fictitious crack model, crack is represented in terms of the separation of two adjacent interfaces and the constitutive equation between the separation and traction is assumed. The effect of fatigue loading was included in the constitutive equation by considering damage accumulation in the cohesive zone. To investigate the effect of the residual stress on the fatigue crack growth, we calculated the residual stress distribution due to transient heat flux to the specimen by finite element method. Fatigue crack growth was simulated by the fictitious crack model with repeated loading. The mode-I crack growth rates were compared for the cases with and without the compressive residual stress around the crack tip. It was observed that the mode-I crack growth can be suppressed by compressive residual stress.

  • PDF