• Title/Summary/Keyword: Crack direction

Search Result 546, Processing Time 0.025 seconds

Characteristic of Fatigue Crack Behavior on the Mixed-Mode in Aluminum Alloy 5083-O

  • Kim, Gun-Ho;Cho, Kyu-Chun;Lee, Ho-Yeon;Won, Young-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.899-906
    • /
    • 2011
  • Generally, load conditions of machine or structure in fatigue destruction is occurred not under single load conditions but under mixed load conditions. However, the experiment under mixing mode is insufficient because of no having test standard to the behavior of crack under mixing mode and variety of test methods, and many tests are required. In this paper measured crack direction path by created figure capture system when a experiment. Also, we studied by comparison the behavior of crack giving the change of stress ratio and inserting beach mark. Through the test under mixing mode, advancing path of crack is indicated that advancing inclined angle ${\Theta}$ (direction of specimen length) has increased depending on the increase of mixed mode impaction. It is indicated that according to the increase of mixed mode loading condition impaction under mixing mode, advancing speed of crack gets slow. Also, we found that inner crack(cross section of specimen) is progressed more rapidly than outer crack based on data through beach mark.

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

Analysis of Mixed Mode Crack Extension in Anisotropic Solids (이방성재료내 혼합모드균열의 진전 해석)

  • 임원균;강석진;진영균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.301-308
    • /
    • 2001
  • The problem of predicting crack propagation in anisotropic solids which is a subject of considerable practical importance is examined. The effect of the second term in the asymptotic expansion of the crack tip stress field on the direction of initial crack extension is made explicitly. We employ the normal stress ratio theory to determine values for the direction of initial crack extension. The theoretical analysis is performed for the wide range of the anisotropic material properties. It is shown that the use of second order term in the series expansion is essential for the accurate determination of crack growth direction in anisotropic solids.

  • PDF

Analysis of Orthotropic Materials with Crack (균열을 내포하는 직방성재료의 해석)

  • 임원균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by the use of second order term in the series expansion is important for the accurate determination of crack growth direction.

  • PDF

The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material (SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.

Fatigue Crack Initiation around a Hole under Out-of-phase Biaxial Loading (이상 이축 하중 하에서 구멍 주위에서의 피로 균열 발생)

  • Huh, Yong-Hak;Park, Pi-Lip;Kim, Dong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1695-1702
    • /
    • 2003
  • Fatigue crack initiation around a hole subjected to biaxial fatigue loads with a phase difference was investigated. Axial and torsional biaxial fatigue loads with different phase differences and biaxiality of 1/√3 were applied to thin-walled tubular specimens. Five phase differences of 0, 45, 90, 145 and 180 degrees were selected. Directions of the fatigue crack initiation around the hole were found to approach to the circumferential direction of the specimen with increment of the phase difference for fatigue tests with phase differences less than 90$^{\circ}$. Whereas directions for tests with phase differences greater than 90$^{\circ}$ got away from the circumferential direction and those were symmetric to the directions for tests with phase difference less than 90. . Furthermore, it was shown that the fatigue initiation life decreased with increment of phase difference for fatigue tests with phase differences less than 90$^{\circ}$, but it increased for tests with phase difference greater than 90$^{\circ}$. The crack initiation direction can be successfully explained by using the direction of the maximum tangential stress range obtained around the hole and at far-field.

Characteristics of fatigue crack propagations with respect to the angles between rolling and tensile loading directions of steel plates (강판의 압연 방향과 인장하중 방향의 상대 각도에 따른 피로 균열 진전 특성)

  • Lee Yong-Bok;Oh Byung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 2005
  • Steel plates used for common structures are manufactured by rolling processes in general. The rolling direction traces generated during the processes have significant influences on mechanical properties and fatigue behavior of the plates. The objective of present study is to investigate those directional characteristics for the enhancement of steel structure safety. SS400 steel plates of 3 mm thickness are tested in this study, When the angles between the tensile loading direction and the rolling direction of the plates are increased, their yield strengths are increased and elongations are rather decreased. It is also shown that fatigue crack growth rates in the plates can be increased according to the changes of those mechanical characteristics. For the safety of the structures, therefore, it is critical to decrease the angles between the rolling direction and the tensile loading direction.

Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy (2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향)

  • 오세욱;김태형;오정종
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

Evaluation of Fatigue Crack Propagation Depending on Fiber Array Direction in Woven CFRP Composites (평직 CFRP 복합재료의 섬유 배열각도별 피로 균열 성장 평가)

  • Geum, Jin-Hwa;Choi, Jung-Hun;Park, Hong-Sun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Many researchers have studied woven fabric carbon-fiber-reinforced composite (CFRP) materials but the study of fatigue crack propagation in composites has been insufficient. It has known that the crack propagation behavior differs depending on the load and the fiber direction. In this study, the fatigue crack propagation along two different fiber array directions ($0^{\circ}$, $45^{\circ}$) in plain woven CFRP composite was investigated. Fatigue crack propagation tests were conducted on the woven CFRP composite under a sinusoidal waveform load with stress ratios of 0.1 at a frequency of 10 Hz. Once the results of the tests were obtained, fatigue crack propagation rates (da/dN) were plotted against the energy release rate amplitude (${\Delta}G$), and it was observed that either mode I crack propagation or mixed mode crack propagation occurs depending on the fiber array direction.

A Study on the Propagation Behaviour of the Fatigue Cracks in Rolled Steel Plates (압연강판(壓延鋼板)의 피로균열(被虜龜裂) 전파거동(傳播擧動)에 대(對)한 연구(硏究))

  • C.S.,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.43-58
    • /
    • 1975
  • There are many reports on fatigue crack of metallic materials but most of them relate crack propagation rate to stress intensity factor. The problem of crack propagation is not yet clarified, especially the bridge between micro and macro phenomena In this experiment rotating bending fatigue tests have been carried out with smoothed specimen of rolled steel plates including 0.2% carbon under application of three stress conditions to investigate the slip band and the crack propagation behaviour. The results obtained are as follows; 1) The length of cracks which have grown at initial crack tips can be expressed as follows; $l=Ae^{BNr}$(A,B: constant, $N_r$: cycle ratio) $\frac{dl}{dN}=\frac{AB}{N_f}{\cdot}e^{BNr}$($N_f$:fatigue life) 2) The ratio of slipped grain number to total grain number is $S_f=7{\sigma}-5.6$-5.6{\sigma}_c$($\sigma$: stress amplitude) (${\sigma}_c$: fatigue limit) 3) When the fatigue process transfers from Stage I to Stage II, the crack which propagates into specimen changes its direction from that of the maximum shear stress to the direction of perpendicular to principal stress and this is same in the circumferential direction of specimen. the crack propagation behaviors of both sides of a crack are different each other when they approach to the grain boundary.

  • PDF