• 제목/요약/키워드: Crack conditions

검색결과 1,039건 처리시간 0.031초

Cr-Mo강 용접후 열처리재의 피로파괴에 관한 연구

  • 임재규;정세희;최동암
    • Journal of Welding and Joining
    • /
    • 제5권1호
    • /
    • pp.73-80
    • /
    • 1987
  • During PWHT, it is well known that residual stress in weld HAZ is one of the reasons for PWHT embitterment. In case of static loading, it was experimentally found that fracture toughness of weld HAZ was dependant upon PWHT conditions. However, the effects of PWHT on fatigue behavior are not clearly verified. Therefore, in this paper, the effects of heating rate PWHT conditions and residual stress simulated in weld HAZ of Cr-Mo steel on fatigue crack propagation behavior were evaluated by fatigue Testing and SEM observation. The obtained results are summarized as follows; 1. Applied stress($10 Kgf/mm^2$) in weld HAZ during PWHT tneded to decrease fatigue strength and to increase fatigue crack growth rate. 2. Applied stress and slow heating rate of 60.deg. C/hr during PWHT contributed to precipitin of impurity elements as well as carbide, which promoted the fatigue crack growth. 3. Fatigue crack growth rate decreased at the heating rate of 220.deg. C/hr in contrast with 600.deg. C/hr and 60.deg. C/hr.

  • PDF

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • 제5권3호
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

압축잔류응력이 스프링강의 고온환경 피로균열 진전거동에 미치는 영향 (Effect of Compressive Residual Stress on the High Temperature fatigue Crack Propagation Behavior of Shot-peened Spring Steel)

  • 정찬기;박경동
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, the effect of the compressive residual stresses was obtained at the test conditions of the higher temperature than the ambient temperature. The examination was performed with the CT specimen result of the material(JISG SUP9) which is being commonly used for the marine engine parts and the ocean structures. As a result, the test conditions at the higher temperature were acquired considering the peak values of the compressive residual stresses of the specimens and the effect on the fatigue crack propagation speed da/dN in stage II and the threshold stress intensity factor range Δth in stage I. Also the material constant C and the fatigue crack propagation index m in the formula of Paris Law da/dN=C (ΔK)$^{m}$ were suggested to estimate the dependence on the test temperature.

Brittle fracture analysis of the offset-crack DCDC specimen

  • Ayatollahi, M.R.;Bagherifard, S.
    • Structural Engineering and Mechanics
    • /
    • 제29권3호
    • /
    • pp.301-310
    • /
    • 2008
  • Applications of fracture mechanics in the strength analysis of ceramic materials have been lately studied by many researchers. Various test specimens have been proposed in order to investigate the fracture resistance of cracked bodies under mixed mode conditions. Double Cleavage Drilled Compression (DCDC) specimen, with a hole offset from the centerline is a configuration that is frequently used in subcritical crack growth studies of ceramics and glasses. This specimen exhibits a strong crack path stability that is due to the strongly negative T-stress term. In this paper the maximum tensile stress (MTS) criterion is employed for investigating theoretically the initiation of brittle fracture in the DCDC specimen under mixed mode conditions. It is shown that the T-stress has a significant influence on the predicted fracture load and the crack initiation angle. The theoretical results suggest that brittle fracture in the DCDC specimen is controlled by a combination of the singular stresses (characterized by KI and KII) and the non-singular stress term, T-stress.

전기장을 받는 강유전체 세라믹의 분역회전 인성화 (Domain Switching Toughening of Ferroelectric Ceramics Subjected to Electric Fields)

  • 정경문;범현규
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.577-584
    • /
    • 2003
  • A crack with growth in ferroelectric ceramics under purely electric loading is analyzed. The crack tip stress intensity factor for the growing crack under small-scale conditions is evaluated by employing the model of nonlinear domain switching. The crack tip stress intensity factor increases or decreases with crack growth, depending on the electrical nonlinear behavior and the direction of an applied electric field. It is shown that the ferroelectric material can be either toughened or weakened as the crack grows. The steady state crack growth in ferroelectric ceramics is also discussed.

A Study on Fatigue Crack Propagation of Rail Steel under Constant and Mixed Mode Variable Amplitude Loadings

  • Kim, Chul-Su;Chung, Kwang-Woo
    • International Journal of Railway
    • /
    • 제5권2호
    • /
    • pp.71-76
    • /
    • 2012
  • Recently, axle load, operating speed and traffic density on railroads have had a tendency to increase and thereby cause additional pressure applied on used track. These operating conditions frequently result in service failure due to wear caused by wheel-rail contact and fatigue damage under cyclic loading. Among rail defects, the transverse crack, which has been the most dangerous type of fatigue damages, is developed from the subsurface crack near the rail running face and grows perpendicular to the rail surface. Therefore, it is necessary to investigate systematically the growth behavior of transverse crack for rail steel under mixed mode. In this study, the fatigue crack growth behavior of the transverse crack in rail steel was experimentally investigated under mixed-mode variable amplitude loadings.

차원 축소된 표면파 투과 함수와 인공신경망을 이용한 콘크리트의 균열 깊이 평가 기법 (Dimensionality Reduced Wave Transmission Function and Neural Networks for Crack Depth Estimation in Concrete)

  • 신성우;윤정방
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.27-32
    • /
    • 2007
  • Determination of crack depth in filed using the self-calibrating surface wave transmission measurement and the cutting frequency in the transmission function (TRF) is very difficult due to variations of the measurement conditions. In this study, it is proposed to use the measured full TRF as a feature for crack depth assessment. A principal component analysis (PCA) is employed to generate a basis of the measured TRFs for various crack cases. The measured TRFs are represented by their projections onto the most significant principal components. Then artificial neural networks (NNs) using the PCA-compressed TRFs is applied to assess the crack in concrete. Experimental study is carried out for five different crack cases to investigate the effectiveness of the proposed method. Results reveal that the proposed method can be effectively used for the crack depth assessment of concrete structures.

  • PDF

Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder

  • Woo, Tae-Wuk;Sakane, Masao;Kobayashi, Kaoru;Park, Hyun-Chul;Kim, Kwang-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제17권3호
    • /
    • pp.33-41
    • /
    • 2010
  • Crack propagation mechanisms of Sn-3.0Ag-0.5Cu solder were studied in strain controlled push-pull creepfatigue conditions using the fast-fast (pp) and the slow-fast (cp) strain waveforms at 313 K. Transgranular cracking was found in the pp strain waveform which led to the cycle-dominant crack propagation and intergranular cracking in the cp strain waveform that led to the time-dominant crack propagation. The time-dominant crack propagation rate was faster than the cycle-dominant crack propagation rate when compared with J-integral range which resulted from the creep damage at the crack tip in the cp strain waveform. Clear recrystallization around the crack was found in the pp and the cp strain waveforms, but the recrystallized grain size in the cp strain waveform was smaller than that in the pp strain waveform. The cycle-dominant crack propagated in the normal direction to the specimen axis macroscopically, but the time-dominant crack propagated in the shear direction which was discussed in relation with shear micro cracks formed at the crack tip.

THE INDIRECT BOUNDARY INTEGRAL METHOD FOR CURVED CRACKS IN PLANE ELASTICITY

  • Yun, Beong-In
    • 대한수학회지
    • /
    • 제39권6호
    • /
    • pp.913-930
    • /
    • 2002
  • For curved crack problems in plane elasticity, subjected to the traction conditions on the crack faces, we present a system of boundary integral equations. The procedure is based on the indirect boundary integral method in terms of real variables. For efficient mathematical analysis, we decompose the singular kernel into the Cauchy singular part and the regular one. As a result, solvability of the presented system is proved and availability of the present approach is shown by the numerical example of a circular arc crack.

Effects of loading conditions on the fatigue failure characteristics in a polycarbonate

  • Okayasu, Mitsuhiro;Yano, Kei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • 제3권3호
    • /
    • pp.163-174
    • /
    • 2014
  • In this study, fatigue properties and crack growth characteristics of a polycarbonate (PC) were examined during cyclic loading at various mean stress (${\sigma}_{amp}$) and stress amplitude (${\sigma}_{mean}$) conditions. Different S vs. N and da/dN vs. ${\Delta}K$ relations were obtained depending on the loading condition. The higher fatigue strength and the higher resistance of crack growth are seen for the PC samples cyclically loaded at the higher mean stress and lower stress amplitude due to the low crack driving force. Non-linear S - N relationship was detected in the examination of the fatigue properties with changing the mean stress. This is attributed to the different crack growth rate (longer fatigue life): the sample loaded at the high mean stress with lower stress amplitude. Even if the higher stress amplitude, the low fatigue properties are obtained for the sample loaded at the higher mean stress. This was due to the accumulated strain energy to the sample, where severe plastic deformation occurs instead of crack growth (plasticity-induced crack closure). Shear bands and discontinuous crack growth band (DGB) are observed clearly on the fracture surfaces of the sample cyclically loaded at the high stress amplitude, where the lower the ${\sigma}_{mean}$, the narrower the shear band and DGB. On the other hand, final fracture occurred instantly immediately after the short crack growth occurs in the PC sample loaded at the high mean with the low ${\sigma}_{amp}$, i.e., tear fracture, in which the shear bands and DGB are not seen clearly.