DOI QR코드

DOI QR Code

Domain Switching Toughening of Ferroelectric Ceramics Subjected to Electric Fields

전기장을 받는 강유전체 세라믹의 분역회전 인성화

  • 정경문 (전남대학교 대학원 기계공학과) ;
  • 범현규 (전남대학교 기계공학과)
  • Published : 2003.04.01

Abstract

A crack with growth in ferroelectric ceramics under purely electric loading is analyzed. The crack tip stress intensity factor for the growing crack under small-scale conditions is evaluated by employing the model of nonlinear domain switching. The crack tip stress intensity factor increases or decreases with crack growth, depending on the electrical nonlinear behavior and the direction of an applied electric field. It is shown that the ferroelectric material can be either toughened or weakened as the crack grows. The steady state crack growth in ferroelectric ceramics is also discussed.

Keywords

References

  1. Tobin. A. G. and Pak. Y. E.. 1993. 'Effect of Electric Fields on Fracture Behavior of PZT Ceramics.' Proc. SPIE. Smart Struct. Mater., 1916, pp. 78-86
  2. Park, S. and Sun, C.-T., 1995, 'Fracture Criteria for Piezoelectric Ceramics,' J. Am. Ceram. Soc., Vol. 78. pp. 1475-1480 https://doi.org/10.1111/j.1151-2916.1995.tb08840.x
  3. Wang, H. and Singh, R. N., 1997, 'Crack Propagation in Piezoelectric Ceramics: Effects of Applied Electric Fields,' J. Appl. Phys.. Vol. 81, pp. 7471-7479 https://doi.org/10.1063/1.365290
  4. Fu, R. and Zhang. T.-Y.. 2000, 'Effects of an Electric Field on the Fracture Toughness of Poled Lead Zirconate Titanate Ceramics,' J. Am. Ceram. Soc.. Vol. 83, pp. 1215-1218 https://doi.org/10.1111/j.1151-2916.2000.tb01356.x
  5. Yang, W. and Zhu. T., 1998, 'Switch-Toughening of Ferroelectrics Subjected to Electric Fields,' J. Mech. Phys. Solids, Vol. 46. pp. 291-311 https://doi.org/10.1016/S0022-5096(97)00062-8
  6. Zeng, X. and Rajapakse, R. K. N. D., 2001, 'Domain Switching Induced Fracture Toughness Variation in Ferroelectrics.' Smart Mater. Struct., Vol. 10, pp. 203-211 https://doi.org/10.1088/0964-1726/10/2/305
  7. Beorn, H. G. and Atluri, S. N., 2003, 'Effect of Electric Fields on Fracture Behavior of Ferroelectric Ceramics,' J. Mech. Phys. Solids, In press https://doi.org/10.1016/S0022-5096(03)00004-8
  8. McMeeking, R. M. and Evans. A. G., 1982. 'Mechanics of Transformation-Toughening in Brittle materials,' J. Am. Ceram. Soc., Vol. 65. pp. 242-246 https://doi.org/10.1111/j.1151-2916.1982.tb10426.x
  9. Budiansky, B., Hutchinson, J. W. and Lambropoulos, J. C., 1983, 'Continuum Theory of Dilatant Transformation Toughening Ceramics,' Int. J. Solids Structures, Vol. 19. pp. 337-355 https://doi.org/10.1016/0020-7683(83)90031-8
  10. Meschke. F.. Kolleck, A. and Schneider. G. A., 1997, 'R-Curve Behaviour of $BaTiO_3$ due to Stress-Induced Ferroelastic Domain Switching,' J. Eur. Ceram. Soc., Vol. 17, pp. 1143-1149 https://doi.org/10.1016/S0955-2219(96)00211-7
  11. Kolleck, A., Schneider, G. A. and Meschke, F. A., 2000, 'R-Curve Behavior of $BaTiO_3$-and PZT Ceramics Under the Influence of an Electric Field Applied Parallel to the Crack Front,' Acta mater., Vol. 48, pp. 4099-4113 https://doi.org/10.1016/S1359-6454(00)00198-1
  12. Mao, S. X., Li, X. and Han, X., 2000, 'Toughening of Ferroelectric Ceramics Under Polarization Switching,' Mater. Sci. Engng., Vol. A292, pp. 66-73 https://doi.org/10.1016/S0921-5093(00)01016-9
  13. Liu, Y. G., Jia, D. C. and Zhou, Y., 2002, 'Microstructure and Mechanics Properties of a Lithium Tantalate-Dispersed-Alumina Ceramic Composite,' Ceram. Int., Vol. 28, pp. 111-114 https://doi.org/10.1016/S0272-8842(01)00065-7
  14. Liu, Y. G., Zhou, Y., Jia, D. C.. Meng, Q. C. and Chen, Y. H., 2002, 'Domain Switching Toughening in a $LiTaO_3$ Dispersed $Al_2O_3$ Ceramic Composite,' Scripta Mater., Vol. 47, pp. 63-68 https://doi.org/10.1016/S1359-6462(02)00090-8
  15. Jaffe, B., Cook, W. R. and Jaffe, H., 1971, Piezoelectric Ceramics, Academic Press, New York
  16. Hwang, S. C., Lynch, C. S. and McMeeking, R. M., 1995, 'Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model,' Acta Metall. Mater., Vol. 43, pp. 2073-2084 https://doi.org/10.1016/0956-7151(94)00379-V
  17. Beom, H. G., 1999, 'Small Scale Nonlinear Analysis of Electrostrictive Crack Problems,' J. Mech. Phys. Solids, Vol. 47, pp. 1379-1395 https://doi.org/10.1016/S0022-5096(98)00099-4
  18. Rice, J. R., 1985, 'Three-Dimensional Elastic Crack Tip Interactions with Transformation Strains and Dislocations,' Int. J. Solid Structures, Vol. 21, pp. 781-791 https://doi.org/10.1016/0020-7683(85)90081-2
  19. Gao, H., 1989, 'Application of 3-D Weight Functions - I. Formulations of Crack Interfaces with Transformation Strains and Dislocations,' J. Mech. Phys. Solids, Vol. 37, pp. 133-153 https://doi.org/10.1016/0022-5096(89)90007-0