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THE INDIRECT BOUNDARY INTEGRAL METHOD
FOR CURVED CRACKS IN PLANE ELASTICITY

BeonNG-IN YUN

ABSTRACT. For curved crack problems in plane elasticity, subjected
to the traction conditions on the crack faces, we present a system
of boundary integral equations. The procedure is based on the
indirect boundary integral method in terms of real variables. For
efficient mathematical analysis, we decompose the singular kernel
into the Cauchy singular part and the regular one. As a result,
solvability of the presented system is proved and availability of the
present approach is shown by the numerical example of a circular
arc crack.

1. Introduction

We consider the linear elastic field in the infinite plane, with body
force terms omitted, which contains a curved crack, I' subjected to the
equal and opposite loading on the crack faces. Since %t; = t‘i+ +t =
0 ( = 1,2) for the tractions ¢} and ¢ on the upper- and lower- crack
faces, respectively, the traditional direct boundary integral formulation
[1] gives

- /F Ty(w,y)Dus(y)dT(y),  z € R2\T,

%A“i(x) - /FTiJ'(%y)AW(y) dl'(y), =z€T,
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where T;;’s are the Kelvin’s fundamental solutions for tractions, u;’s
are the displacements and Au; = u] — u] are the crack opening dis-
placements [5]. It is well known that these equations have serious defi-
ciencies:

1. There are two unknowns, u; and Au;.

2. Any set of equal and opposite tractions, say, ¥t; = 0 will result in
the same equation (1).

3. The stresses (or tractions) induced by the formula (1) have hyper
singular integrals.

In order to overcome these problems many works such as subregion
method [2], crack Green’s function technique, dislocation theory [6, 10]
and complex variable method [3] have been presented. However it is
known that these methods are too restrictive to the general crack ge-
ometry and have the drawback that their essential ingredients must be
constructed in full for every individual situation.

Recently, another remarkable technique, so called dual boundary ele-
ment method (DBEM) was developed by Portela [8] and Portela at al [9].
In this method the displacement boundary integral equation is applied
to one of the crack faces and the traction boundary integral equation
on the other, for which there are no mathematical analysis on the solv-
ability. On the other hand, for curved crack problems, Wendland and
Stephan [11] have studied on the hypersingular integral equations ob-
tained by applying the traction operator to the direct boundary integral
equations. They gave complete results on the solvability of the equa-
tions and on the regularity of the solutions in Sobolev spaces. However,
in this case, one cannot help manipulating hypersingular integrals in
numerical scheme.

In this paper we introduce the indirect boundary integral method for
curved crack problems which is based on the displacement representa-
tion in the form of the single - layer potential. This results in a system of
two integral equations of real variables which contain Cauchy singular
kernels. The integral operators corresponding to these kernels are de-
composed for efficient mathematical analysis and numerical evaluation.
We expect this approach can avoid the difficulties of direct boundary
integral methods. Moreover, as a main result of this paper, solvability
of the system of induced integral equations is proved.

In the next section we formulate a system of boundary integral equa-
tions on the curved crack face and, in Section 3, prove the solvability
of the boundary integral equations. Section 4 shows efficiency of the
present method by a numerical example of a circular arc crack.
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2. Indirect boundary integral method

In the isotropic, homogeneous and linear elastic field without body
forces, the displacement vector u = (u, ug) satisfies

(2) pV2u+ (A +p)grad -divu=0 in Q=R2\T,

where p = E/(2(1 +v)), A = 2uv/(1 — 2v). v is the Poisson ratio and
E is the Young’s modulus. In this paper we consider the state of the
plane strain. Under the assumption that the equal and opposite loading
is applied on the crack faces, we identify I" with the upper crack face
and denote np = (ny(P), na(P)) as a outward normal vector at P € T'.
Then, for the tractions ¢; (i = 1,2) defined by

2
t:(P) =Y oij(P)n;(P), PEeT,
=1

we consider the boundary conditions

{tl(P):f(P),

3) (P)=g(P), PeT,

where f(P) and g{P) are given.

2.1. Derivation of the boundary integral equations

As mentioned in the previous section the traditional direct boundary
integral formulae result in the equation (1) which contains some math-
ematical difficulties. To avoid these problems, we suggest the indirect
boundary integral formulae of the displacements u; such as

(4) w(P) = /F Ui(P, Q\(Q)dN(Q),  PeR,

in which rigid body motions are ignored. In (4) U;;(P,Q)’s are the
Kelvin’s fundamental solutions for displacements [1] and \;(P)’s are the
density functions to be determined by the condition (3) after translation
of the formula (4) into the traction formulae. Since, in the equation (4),
ui(P) = log|P| [ A(Q)dT(Q) + O(1) as |P| — oo, we assume the
boundedness of the displacements at infinity which is satisfied by the
conditions

(5) /F MNQAT(@Q) =0, i=1,2
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Oun the other hand, from the equation (4), the stresses become
2
6  ou(P)=Y /F Dk(PLQMQ (@), P eq,
k=1

where, for two points P’ = (z1, 22) and Q = (£1, &2) in Q with r =
|Q — P'|, and for a constant A denoted as
1

A=
(1l —v)’

the kernel D,y is defined by
2uv [OU | OUy p [O0Uy  OUy
1-—2v { ox + Oza Gty Oz + ox;

A
= {(1 = 2v)(r kb5 + 7 jOks — ri6jk) + 2747 57k}

Dii(P',Q) =
(7)

For a fixed point P € T, let Lp be the line through P parallel to the
normal vector np = (ni(P), na(P)). Multiplying both sides of (6) by
np and observing that

or or or
Ehak e v Z T

we define a function ¢; in the region Lp N such as

[
WE

ti(P') ' o (P')n;(P)
(8) o
=Y [ TP QMQA@,  PeLleng
k=17T
where
w(P,Q) = ZD”,C(P’ )n;(P)
©) = _é{(l — 2v)(r gni(P) — 7 ink(P))

0
+ [(1 — 2V)5ik + 27"1'7"k] —an—;}
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For i # k, this can be rewritten by

Ty = _é { [(1 —2v) + 2(7',1')2] _8?1{;} )
(10)
ﬂ%:‘é{U*QW@wWU3‘ﬁm“P»+2”hW%?}'

Then, by the limiting process P’ — P € T", we have the well known result
of the boundary integral equation for the boundary points as follows:

LeMmMA 1. For any twice continuously differentiable boundary curve
T, the function t;(P') defined in (8) satisfies the following jump relation.

(11) phinptl(P P)+Z][ *(P,Q) \(Q)dD(Q), PeT
fori=1,2.

Identifying the limit value of ¢;{P’) in (11) with the traction ¢;(P),
from the boundary conditions (3), we have the boundary integral equa-~
tions as

<%I—}—Su> AL (P) + (S12)\2) (P) :f(P)7

(12) 1
(Sud)(P) + (31+52) W(P)=g(P), PeT,

where S;; are integral operators defined by
(13 (Sud)(P) = | TUP.QUQAQ), ik = 1,2

In the right hand side of this formula, the symbol of the integral means
the Cauchy principal value when ¢ # k. The system of integral equations
in (12) can be written by the matrix form

where T = (A1, A\2)T, 7 = (f, g)T and M is the matrix operator denoted
by
I+ S S
(15) M= T TR
So1 51+ Sa9
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2.2. Decomposition of the kernels

We decompose the integral operator Sz (and Sa;) into the Cauchy
singular operator and a regular one in order to prove solvability of the
equation (14) efficiently. Firstly we assume that the boundary curve T
is parametrized by

P=p(z)=(z,¢(z)) and Q=p()=(£4(8) (-1<z, £<1),
where ¢(x) € C%[—1,1]. Then, for N(z) = /1 + ¢'(z)2 = |F(z)|, we

have
n, = (n1,n2) = (—¢'(z), 1)/N(),

r?=|Q- PP
ey 6© =@ 1°| _ e 2ie e
) = (£ —x) {1+{————§_m ] } (€ — z)*m(z, ),
2 _ 1 ro)2 =1 *1_
(7',1) = m(z, £)’ ( 2) 1 m(z,£)’
rara = [0
1527 5—37 m(m)S)’
and
Dlogr _ (#(6) ~ 9(z)) — (€~ )¢/ (@)
onp (= $)2m($a£)N(33) ’
N -1 66 ~ 9],
@ (3 e = N | Y
B —
r) T N@m(z,€)(€ - 2)°
Furthermore, by denoting as
(18) 2z, = 2= ME? — Sz— D),
we have
;— (7‘,27’&1 - T,lng)
B -1 BE) ~9)] .
(19) s emer R | e e LIOREY

- eles  mew ] ewo).
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The last equality holds by the fact that

[———¢(£§ — i(x) ] ¢ (z) + 1
— [———¢(£2 : :(x)] ¢'(z) + m(z, &) — [_45(52 : Z(w)r
—m(ag) - | 2EZEE] L fo(e) - oo - € -2 @)}

By the results in (16)-(19), the kernels T3% = T3(6(x), 8(€)) can be
rewritten as

.1 24
T = {c%— W 5)} 8(z,¢),
L1 1
N@Te =~ { w24 (1- e ) oo
N@Th = -
(.24 1 [4(6) - ¢(2)
(20) (g mog | oo
= £f$ + h12(z,¢),
N@Th = 5=
24 1 [4(6) - ¢(2)
* ( m(m,a) (@ ) [ £z } 2@8)
- _é—f—:c + ha(z,6),
where the constant c is defined by
c=A(l-2v) = 4—1;1—(;—;2”7)

It should be noted that the functions hiz and hg; in (20) are continuous
functions on the region [-1,1] x [-1,1].

For the convenience of the formulation we multiply both sides of
the equations in (12) by N(z) = |#/(z)| after parametrization of the
variables, and then denote the unknown density function as u;(z) =
Ai(B(z))|B (z)|. Then the integral operators S;; are reset as those mul-
tiplied by N(z). Moreover we decompose the singular integral operators
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512 and 521 as
1

1 1
Supa(@) =c (O + [ huale,ua() de

1= Sigha(x) + Stapa(w)

(21)

and

1 1
o Sm@= e @t [ @ ome

1= Sp1m1(x) + S5 (2).
Then the equation (12) or (14) becomes, for —1 <z <1,

(23) { %,I+slol (Siz + S&)} {m)l _ M) [f(ﬁ(x))} |
(Sg1 +551) 51+ S pa(z) g(8(z))

3. Solvability of the indirect boundary integral equations

For a closed curve, the indirect boundary integral method of real
variables has been rigorously investigated by means of the mathematical
structure of argument [4]. However, as par as the author is aware, there
are no account of the solvability of the indirect integral equations in
the case of an open arc or crack. It is notable that Wendland and
Stephan [11] gave complete results on the solvability of hypersingular
integral equations, based on the direct boundary integral method, for
crack problems. In this section we study on the functional properties of
the integral operators introduced in the previous section and then prove
solvability of the system of boundary integral equations (23).

THEOREM 2. Assume that the boundary curve ' is a twice contin-
uously differentiable and convex or concave open arc with § < 0p <
for all P € T, where 8p is an interior angle on P between two end points
of I'. Then the operators %I + S11 and %I + Soo are invertible on the

space C(T") for any Poisson ratio 0 < v < %

Proof. We show that the adjoint of %I + S;;, namely, %I + 5y is
invertible. S;; is defined by

(Sud)(P) = /F Ti(P,Q) ¢(Q) dT(Q),
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where

Ta(P,Q) = —A[(1 — 20) + 2(r )] 21087

Since the kernel Tj; (i = 1, 2) is continuous on TI', the operator S;; is
compact. Referring to the Fredholm alternative, it is suflicient to show
that 1I + SzZ is injective.

Assume that A; in C(I") is a non- trivial solution of the homogeneous
equation

(G1+ Si)Ai(P) = 0.

Then
M(P) = —2 /F Tyi(P,Q)M(Q) dT(Q)

0
- —2/FA[(1 —2v) + 2(r,)?] (8 ng log'r) X:(Q) dT(Q).

Since r; <1 and 1 —2r > 0 for all v < 0.5,

0< AL =20) + 2] < s (1= 2) 424+ (1= )] = .

and, in Yun and Lee [13), it has been proved that

2 —0p—T.
/BnQ ogrdl(Q)=0p—m

Moreover the sign of z-— logr is not changed because the boundary I
has been assumed to be convex or concave. This results in

/ aT(Q) = log r dT'(Q)

Therefore it follows that

M (P)] < 20 Al / IT:4(P, @) dT(Q)

<2 (3-3) =l

that is, |A;(P)| < ”/\ZH(,c for all P in T. This is a contradiction so that
the adjoint operator ; 17+ 5;; is invertible, which completes the proof. [

logr

0
8nQ 8nQ
—7T—0p<5 PeT.



922 Beong-In Yun

If we introduce the Banach space Ly(J, w) of all measurable functions
¢ on a line segment J = [~1,1] with the norm ||¢ll2w = [wollL,y,
where w is a related weight, then we have the following lemma.

THEOREM 3. For a weight w(z) = 1/vV1—12? (-1 < z < 1), the
Cauchy singular integral operator

t ¢ La([=1,1],w™ %) — Ly([~1,1],w"7)

is a bounded linear operator with ||S},|| < mc and I+45},* is invertible.

Proof. For any function ¢(z) € Lp([-1, 1],w_%), referring the fact
that C[-1,1] is a dense subset of Ly([~1,1],w*),a < 1, we may take

a continuous function f(z) such that wif € C[-1,1] and Hw"%gb -
w%fllbz[_m] < ¢ for sufficiently small e.

Then ¢(z) can be approximated by the function A(z) = w(z)f(z)
€ L2([—1,1],w'%) as

lo=Al, 5 = o2 6= w1y
= [[w_%qb - w%f”Lz[—l,l] < &

Since the continuous function f can be represented by the Chebyshev
polynomial expansion, we set

Az) = w(x) Z anTn(x).

n>0

By using the orthogonality of the first kind Chebyshev polynomials {7}, }
with the weight w(zx), we have

M2,y = [v@) Y aTa@)],

2
n>0

= /_11 w(m)[ZanTn(x)]2 dx

n>0

1
= Zan2 /4 w(z) Ty (z)? dz

~() e e} <

n>1
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On the other hand, the result in Mikhlin and Prossdorf [7] such as

0, —0
][1 w(©) Tn(é)dE={ §

aé-z wUp-1(z), n>1

and the orthogonality of the second kind Chebyshev polynomials, {Uy,}
with the weight w~!(z) imply

LR D 2O d&ﬂiw_,ﬁ,
e

n>1
1
/_ (;an n—1(x )w (z)dz
/Un_ 2w (z) dz
n>1
()Za CORPY e
n>1

where c is the constant given in (20). Thus S}, is a bounded operator
with ||S15]| € me. Moreover by observing

1-2v 1 1
=————< - forall 0< =
me -0 1 or a V<3
we have
1
145157 < 4]S5, < 4(n0)* < 4
which implies that I + 45}, is invertible. O

In fact it is known that the operator S}, is the invertible continuous
operator from the space La([—1, 1], w'%) onto itself [7]. For the solvabil-
ity of the system given in (23), we define a space X = Lo([-1, 1], w‘%) X
Ly(]-1, 1],w”%) with the weight w(z) = 1/v/1 — z2. Then we have the
main theorem as follows.

THEOREM 4. The system of integral equations (23) is uniquely solv-
able on the space X.
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Proof. Noting that S}, = —S1,, we decompose the matrix in the left
hand side of (23) such as

1 ! o
=1 Su S
M=| 2 , l12 7 12
=512 31 Sy S2
Then it can be seen that B is compact since the kernels of the integral

operators S11, S22, Sio and S35, are continuous. From Lemma 3.2 we
can see that A is an invertible operator with its inverse,

21 +48,,2)71  —aS),(I +48;,%) 7!

481,(I +485,5)71  2(1 + 48,571 }

by observing that AA™! = A=1A = I. Therefore the operator
M=A(I+A7'B)

is invertible if it is injective. In the homogeneous equation

Mv =0, V=(U1,112)T

=A + B.

-1

of (23), if we interpret v as a vector of the crack opening displacements
with traction zero and then apply the traction operator to the above
homogeneous equation, the resultant equation has the trivial solution
v = 0 by Theorem 2.3 in Wendland and Stephan [11]. This completes
the proof. O

4. A numerical example

Firstly, referring to Ladner [6] and Xu and Keer [12], we represent the
unknown density functions of the boundary integral equations in (23) as

N-1 N-1
04 m@) =w) Y el m() =) Y bTh(@)
n=0 n=0

where Ty (z) is the first kind Chebyshev polynomial and w(z) is the
related weight function such as

w(m)=(l—x2)_%, -1<z< 1
It should be noted that we can avoid numerical evaluation of the Cauchy

principal value integrals, S7ou;(z) = —S5 () in (23) by the fact

1
(25) ][_ 1 5_% WV T,(€)dE = 7Un_1(z), n >0,
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where U,_1(z) is the second kind Chebyshev polynomial with U_;(z) =
0. However, the system of equations (23) still contains weakly singular
integrals and thus the standard quadrature rule for these integrals may
result in low convergence. To overcome this problem, we use a nonlinear
coordinate transformation as follows:

41—t
where 734l is a well known Sidi sigmoidal transformation of order m
defined by

i) = Y [ emnrae, 0sasa

In the work of Johnston and Elliott [14], it has been proved that the
sigmoidal transformation technique like (26) sufficiently improves the
errors of the numerical evaluation using the Gauss quadrature rule for
weakly singular integrals.

Once the density functions, y; and pe are obtained by solving the
equations in (23), we can evaluate displacements uy(z,y) and us(z,y)
for arbitrary source point, P = (z,y) € R2. That is, from the formulae
in (4), the displacements are

1

1

where the kernels U;;(z,y; §) take the form of

2
Uni(z,y;6) = % {(3 — 4v)log (%) + (%%) }

(28) Ura(z,y;€) = Ui (z,y;8) = % G 5)(7?2_ ¢(§)),

Ua(z,y; &) = 2% {(3 —4v)log (é) * (3_/;7,_@)2}

and r=1/(z — 62+ (y ~ B(E))°.
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On the other hand, from the formulae in (6), we define stress functions
F(P), G(P) and H(P) for any source point P = (z,y) as

F(P) = 0'11(P) +O’22(P)

L1 EGETIWANY
_7r/_1£—-:v m(z, ) {“1(5)+[ £z ]uz(&)} 1,
G(P) = 022(P) — 011(P)

:/1 1 24 (1_ 2
1 &—z m(z,§) m(z,

:
) @)+ |22 ot | g
H(P) := 2015(P)
1 —
- [ mma e e me
~|e-2a(0- g e}
in which
m(z,€) = 1+ [‘z’é—é)_—;ﬁr

As an example we consider a circular —arc crack, I' parametrized by

B&) =& (&), —1<E<1,

where
(30) ¢ =v2—-2* -1

under the condition on the boundary T as follows:

f(P)=0, g(P)=1/N(z)
for all P = B(z) € I'. Numerical results for this example have been
obtained from a program coded by Mathematica V4, and the standard
Legendre Gauss quadrature rule with the number of integration points,
NGP = 12 has been used after the Sidi-sigmoidal transformation of

order m = 5.
For several source points, P, k = 1,2, 3,4,5, taken as

P =(0,6(0) +0.1), Py=(0,6(0)+1), Py=(1.1,0)

and
Py = (2,0), P = (10, 10).
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Table 1 and Table 2 show numerical values of the displacements, u;(Py)
and stress functions, F'(P.), G(P;) and H(F}), respectively, with respect
to various numbers of collocation points, N = 4, 8, ---, 24. One can
see that all of the numerical solutions for displacements and stresses
converge as NN increases. The rate of convergence can be accelerated by
using large NGP.

Table 1. Numerical results of displacements, u; and wuy for
each source point, P; (i = 1, 2, 3, 4, 5) and for various num-
ber of collocation points, N =4, 8, --- ;24 (NGP = 12).

P, | N ui (F;) ug(F;)
4 ~-4.99 x 10718 6.21872
8 2.36 x 10716 6.19988
12 ~1.36 x 1071 6.20163
P, | 16 —6.71 x 10716 6.20315
20 ~92.14 x 10716 6.20355
24 0.22 x 107  6.20361
4 —7.35 x 10717 1.43247
8 9.54 x 1017 1.46206
12 3.77 x 10717 1.46741
Py | 16 ~3.29 x 10717 1.46920
20 —3.99 x 10717 1.46985
24 1.62 x 10714 1.47025
4 0.0769053  0.710042
8 0.0483158  0.563936
12 0.0454997  0.540234
Py | 16 0.0458767  0.532329
20 0.0465580  0.528642
24 0.0463925  0.526807
4 —0.0144693 —4.57829
8 —0.0161923 —4.52149
12 —0.0159720 —4.50959
P, | 16 —0.0154557 —4.50592
20 —0.0150095 —4.50397
24 —0.0150299 —4.50280
4 1.97791 —16.6662
8 1.94592 —16.3887
12 1.93965 —16.3345

P | 16 1.93769 —16.3173
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1.93667
1.93608

—16.3085

—16.3034

20
24

Table 2. Numerical results of stress functions, F', G and H
for each source point, P; (¢ = 1, 2, 3, 4, 5) and for various
number of collocation points, N =4, 8, --- ,24 (NGP = 12).

Source points | N F(F) G(P) H(P;,
4 —1.53470 0.230063 9.85 x 10717
8 —1.50869 0.226362 —-7.87 x 10717
12 —1.50631 0.225485 7.25 x 10717
P 16 —1.50562 0.225056  —1.90 x 10716
20 —1.50515 0.224771 1.63 x 1017
24 —1.50506 0.224712 —3.09 x 10715
4 —0.854899 —0.456206 3.48 x 10717
8 —0.844299 —0.452825 -2.38 x 10717
12 —0.842416 —0.452469  5.367 x 10719
P, 16 —0.841793 ~0.452385 —1.96 x 1016
20 —0.841426 —0.452313 2.26 x 10~17
24 —0.841246 —0.452269 6.97 x 10715
4 0.204312 —0.073165 0.382431
8 0.232262 —0.096559 0.345530
12 0.238366 —0.101830 0.340992
Py 16 0.239724 —0.103085 0.339907
20 0.240013 —0.103416 0.339435
24 0.240285 —0.103624 0.339038
4 0.0458348  —0.0301487 0.179745
8 0.0469173  —0.0310170 0.176227
12 0.0469667  —0.0310532 0.175513
P, 16 0.0469383  —0.0310351 0.175286
20 0.0469014  —0.0310108 0.175174
24 0.0469059  —0.0310143 0.175105
4 —0.0624079  0.000378806 —0.0264741
8 —~0.0613682  0.000396734 —0.0260292
12 | —0.0611650 0.000399182 —0.0259424
P 16 | —0.0611008 0.000399539 —0.0259152
20 | —0.0610675 0.000399439 —0.0259012
24 | —0.0610484 0.000399670 —0.0258930
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5. Conclusion

In this paper we have studied on the indirect boundary integral
method, via real variables, for curved crack problems in plane elasticity.
Unique solvability of the resultant system of integral equations has been
proved completely. In addition, a numerical example of a circular arc
crack has been given to justify the result of this paper.

As we mentioned in Section 1, one can observe that this approach may
overcome the theoretical and computational difficulties in the traditional
boundary integral formulation of the cracked body.

We expect further work on the convergence analysis of the approx-
imate scheme, which assures availability and stability of the indirect
boundary integral method.
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